Nickel (II) Sulfate Heptahydrate

Keyword(s):  
Author(s):  
Jun-Xia Li ◽  
Tian Zhang ◽  
He-Jun Chen ◽  
Zhong-Xiang Du

Abstract A new binary ZnII coordination polymer, [Zn(2-cpa)(H2O)] n (2D-Zn) has been prepared by a 120 °C hydrothermal reaction of zinc(II) sulfate heptahydrate and 2-carboxy phenoxyacetic acid (2-H2cpa) in the presence of potassium hydroxide. Single-crystal X-ray diffraction analysis shows that the ZnII ion is located in a deformed ZnO6 octahedron bonded by one water and three 2-carboxy phenoxyacetate (2-cpa) ligands. The 2-cpa exhibits pentadentate double bridging chelate-μ 3 coordination mode and connects adjacent ZnII ions to generate a corrugated (4,4)-connected layer structure. The structures, conformation of 2-cpa and photoluminescence spectra for 2D-Zn have been carefully analyzed and compared with its two closely related compounds ̶ 1D [Zn(2-cpa)(H2O)] n (1D-Zn) and mononuclear [Zn(2-cpa)(H2O)3] (0D-Zn). The results showed that the conformation of 2-cpa in 2D-Zn has the maximum alteration and the corresponding fluorescence emission peak of 2D-Zn has the largest red-shift of 62 nm compared with that of free 2-H2cpa.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Chenzhen Liu ◽  
Ling Ma ◽  
Zhonghao Rao ◽  
Yimin Li

In this study, micro-encapsulated phase change material (microPCM) was successfully synthesized by emulsion polymerization method, using magnesium sulfate heptahydrate (MSH) as core material and urea resin (UR) as shell material. The surface morphologies and particle size distributions of the microPCM were tested by scanning electron microscopy (SEM) and laser particle size analyzer. The chemical structure of microPCM was analyzed by Fourier-transform infrared spectroscopy (FTIR). The thermal properties were investigated by differential scanning calorimetry (DSC) and thermal conductivity coefficient instrument, respectively.


Author(s):  
Nives Politeo ◽  
Mateja Pisačić ◽  
Marijana Đaković ◽  
Vesna Sokol ◽  
Boris-Marko Kukovec

A 6-chloronicotinate (6-Clnic) salt of a one-dimensional cationic nickel(II) coordination polymer with 4,4′-bipyridine (4,4′-bpy), namely, catena-poly[[[tetraaquanickel(II)]-μ-4,4′-bipyridine-κ2 N:N′] bis(6-chloronicotinate) tetrahydrate], {[Ni(C10H8N2)(H2O)4](C6H3ClNO2)2·4H2O} n or {[Ni(4,4′-bpy)(H2O)4](6-Clnic)2·4H2O} n , (1), was prepared by the reaction of nickel(II) sulfate heptahydrate, 6-chloronicotinic acid and 4,4′-bipyridine in a mixture of water and ethanol. The molecular structure of 1 comprises a one-dimensional polymeric {[Ni(4,4′-bpy)(H2O)4]2+} n cation, two 6-chloronicotinate anions and four water molecules of crystallization per repeating polymeric unit. The nickel(II) ion in the polymeric cation is octahedrally coordinated by four water molecule O atoms and by two 4,4′-bipyridine N atoms in the trans position. The 4,4′-bipyridine ligands act as bridges and, thus, connect the symmetry-related nickel(II) ions into an infinite one-dimensional polymeric chain extending along the b-axis direction. In the extended structure of 1, the polymeric chains of {[Ni(4,4′-bpy)(H2O)4]2+} n , the 6-chloronicotinate anions and the water molecules of crystallization are assembled into an infinite three-dimensional hydrogen-bonded network via strong O—H...O and O—H...N hydrogen bonds, leading to the formation of the representative hydrogen-bonded ring motifs: tetrameric R 2 4(8) and R 4 4(10) loops, a dimeric R 2 2(8) loop and a pentameric R 4 5(16) loop.


2018 ◽  
Vol 62 (2) ◽  
pp. 13-18
Author(s):  
D. Marcinčáková ◽  
M. Falis ◽  
P. Schusterová ◽  
P. Váczi ◽  
S. Marcinčák ◽  
...  

Abstract The aim of this study was to evaluate the potential protective role of Agrimonia eupatoria L. in heavy metal induced nephrotoxicity. Rabbit kidney epithelial cells (RK13) were used as the model cell line. They were exposed to three different heavy metal compounds: cadmium chloride dihydrate CdCl2.2H2O (15 and 20 mg.l−1), potassium dichromate K2Cr2O7 (1, 10 mg.l−1), and zinc sulfate heptahydrate ZnSO4.7H2O (50, 150 mg.l−1) simultaneously with agrimony (ethanolic extract, 100 mg.l−1). The cell response was recorded using the xCELLigence system or real-time cell analysis (RTCA) as a cell index (CI) and expressed as cell adherence (%) compared to control cells without treatment. The potential nephroprotective effects were recorded in cells treated with chromium (1 a 10 mg.l−1) and agrimony, where the cell adherence increased from 95.11 ± 11.25 % and 7.24 ± 0.33 % to 103.26 ± 1.23 % and 68.54 ± 4.89 % (P < 0.05) respectfully and also with a combination of agrimony and zinc (150 mg.l−1), where the adherence increased from 57.45 ± 1.98 % to 95.4 ± 6.95 %. During the cell exposure to cadmium in combination with agrimony, the protective effect was not recorded; the adherence of cells was even decreased (P < 0.05).


2021 ◽  
Author(s):  
Edel-Serafin Hernandez-Gomez ◽  
Jose-Luis Olvera-Cervantes ◽  
Benito Corona-Vasquez ◽  
Alonso Corona-Chavez ◽  
Tejinder-Kaur Kataria ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document