Fuller's Earth, Chromatographic

Keyword(s):  
2019 ◽  
Vol 22 (4) ◽  
pp. 350-357 ◽  
Author(s):  
Diane Addie ◽  
Lene Houe ◽  
Kirsty Maitland ◽  
Giuseppe Passantino ◽  
Nicola Decaro

Objectives Feline infectious peritonitis (FIP) is caused by infection with feline coronavirus (FCoV). FCoV is incredibly contagious and transmission is via the faecal–oral route. FCoV infection, and therefore FIP, is most common in breeder and rescue catteries, where many cats are kept indoors, using litter trays. Whether it is possible to break the cycle of FCoV infection and reinfection using cat litters has never been investigated. The aim of the study was to examine the effect of cat litters on FCoV infectivity and virus load in multi-cat households, and transmission frequency. Methods Fifteen cat litters were mixed and incubated with FCoV, centrifuged and the supernatants tested in vitro for the ability to prevent virus infection of cell culture. To test applicability of in vitro results to real life, virus load was measured in two households in a double crossover study of four Fuller’s earth-based cat litters by testing rectal swabs using FCoV reverse transcriptase quantitative PCR. Results Four litters abrogated FCoV infection of cell culture, nine reduced it to a greater or lesser extent and two had no effect. One brand had different virus inhibitory properties depending on where it was manufactured. Fuller’s earth-based litters performed best, presumably by adsorbing virus. In the field study, there appeared to be less virus shedding on one Fuller’s earth-based cat litter. Conclusions and relevance The in vitro study successfully identified cat litters that inactivate FCoV; such litters exist so do not need to be developed. Fuller’s earth-based litters best prevented infection of cell culture, but did not completely abrogate FCoV transmission in two multi-cat households. A dust-free clumping Fuller’s earth litter appeared to fare best, but virus shedding also varied on the control litters, complicating interpretation. Sawdust-based cat litters are not useful in FCoV-endemic households because they track badly and have a poor effect on virus infection.


2017 ◽  
Vol 9 (2) ◽  
pp. 67
Author(s):  
A. M. Ekwonu ◽  
E. O. Egolum

Fats and oils undergo hydrolysis reaction. They hydrolyse to yield propane-1,2,3 triol and the corresponding alkanoic acids if it is acid hydrolysis. Alkaline hydrolysis yields sodium or potassium salt of the alkanoic acid and propane-1,2,3-triol. A common approach for bleaching palm oil has been the use of clay materials, particularly the commercially available fuller’s earth. In this study, the suitability of chemical bleaching of palm oil using acidified (0.1M H2SO4) and non-acidified 1.0M KMnO4 was examined. This is compared to the adsorptive procedure using clay materials. Average bleaching absorbance values of 0.017+0.005 and 0.115+0.004 for acidified and non-acidified KMnO4 were respectively obtained from the oxidative bleaching procedure. Those for fuller’s earth and its blend with sodium sesquicarbonate (trona, a locally obtained clay) gave absorbance values of 0.121+0.011 and 0.186+0.006 respectively; while that for trona/activated carbon blend was 0.234+0.007. These are in comparison to 0.881 for the unbleached palm oil. Thus, a relatively better bleaching was achieved with the oxidative process. A first order rate reaction with respect to the bleaching agents was obtained for both procedures. Rate constants of 0.079+014 (acidified) and 0.055+0.020min-1 (non-acidified) at 800C were recorded for the oxidative bleaching. These are compared to 0.034+0.009 obtained for the clay mixture. Half-life values of 10min for acidified oxidative process, and 28min for adsorptive clay mixture method, were obtained. Efficiency of 98% was obtained for the acidified oxidative compared to approximately 70% for the clay blend. A significance, p< 0.05, between the absorbance values for the acidified oxidative and each of the adsorptive clay bleaching procedures was obtained.These observations indicate the potentials of oxidizing agents especially the acidified KMnO4 in the bleaching of palm oil, and therefore, suggest its usage industrially for this purpose.


2020 ◽  
Vol 19 ◽  
pp. 100503
Author(s):  
Y. Subbareddy ◽  
R. Naresh Kumar ◽  
B.K. Sudhakar ◽  
K. Rayappa Reddy ◽  
Surendra Kumar Martha ◽  
...  

1970 ◽  
Vol 43 (4) ◽  
pp. 529-536
Author(s):  
M Naimul Haque ◽  
M Yunus Miah ◽  
S Ali Ashruf ◽  
M Rafiqul Islam ◽  
A Kumar Das

Waste lubricating oil has been reclaimed by treatment with commercial sulphuric acid followed by adsorption on fuller's earth. A maximum yield (75%) of reclaimed oil at acid- oil ratio of 10:100 with addition of 10% (w/v) fuller's earth has been obtained. Properties of reclaimed oil such as viscosity index, pour point, colour etc. have been improved from 93.4, +2, 5.0 to 109, -10.5, 4.0 by addition of certain proportion of additives. TGA analysis of waste lubricating oil, reclaimed oil and fresh lubricating oil has also been studied. The reclaimed oil obtained after addition of different types of additives is very comparable to SAE 30 grade lubricating oil in terms of properties and is applicable as a standard lubricant. Such a reuse of waste lubricating oil, in addition to its economic effect will help to reduce environmental problem. Key words: Lubricating oil, TGA analysis, Envirormentl problem and Vscosity index.      doi: 10.3329/bjsir.v43i4.2243 Bangladesh J. Sci. Ind. Res. 43(4), 529-536, 2008


minutes retention depending on the oil processed. Then, Synthetic silica hydrogels: Described in the immediately the oil is heated to 70°C, (158°F) to assist "breaking" the preceding section. emulsion and the mixture is passed through a primary (first) centrifuge. The general dosage of acid-activated bleaching earths is 0.3-0.6%, depending on the quality of the oil and bleach-In contrast, the short-mix process, developed in Europe, ing earth. Bleaching earths provide catalytic sites for de-is conducted at 90°C (84°F), uses a more highly concen-composition of oxidation products. Peroxide values (mea-trated caustic, and a mixing time and primary centrifuging sure of aldehydes) and p-anisidine values (precursors for time of less than 1 minute [135]. Less heat damage to the oxidative degradation) first rise and then decrease during oil and higher refining yield are claimed by advocates of bleaching. Bleaching processes used include atmospheric the long mix process. batch, vacuum batch, and continuous vacuum. Vacuum 4. Silica Absorption bleaching has the advantage of excluding air, partially by In traditional refining, oil from the primary centrifuge is vaporization of water in the earth, and is recommended. A washed with warm soft water to remove residual soap and typical vacuum bleaching process is 20-30 minimum at passed through a (secondary) centrifuge. The washed oil 100-110°C (212-230°F) and 50 mmHg absolute [135]. then is dried under vacuum. However, disposal of wash The reactions catalyzed during bleaching continue into water is increasingly becoming a problem, and the indus-the filter bed and are known as the "press bleaching ef-try is shifting to a modified caustic "waterless" refining fect." The reactive components of oil remain in the bleach-process. Soaps poison the adsorption sites of clays in later ing bed. Care should be taken to "blow" the filter press as bleaching operations and are removed by silica hydrogels. free of oil as possible and to wet the filter cake (which can The oil may be degummed with use of chelating acids, be very dusty) to prevent spontaneous combustion [137]. caustic neutralized, passed through a primary centrifuge, At this point, the product is RB ("refined, bleached") and may be partially vacuum-dried. Synthetic silica hy-oil. If the intended product is an oil, it can be sent to the de-drogels, effective in removing 7-25 times more phos-odorizer and become RBD. If solids are desired, the solids-phatides and soaps than clay on a solids basis, and for re-temperature profile of the oil may be modified by hydro-moving phosphorus and the major metal ions, is added genation, interesterification, or chill fractionation, alone or and mixed with the oil. By absorbing these contaminants in combination. first, the bleaching clay is spared for adsorbing chloro-6. Hydrogenation phyll and the oxidation-degradation products of oil Hydrogenation is the process of adding hydrogen to satu-[136-138]. rate carbon-to-carbon double bonds. It is used to raise try-5. Bleaching glyceride melting points and to increase stability as by jective of bleaching is to remove various contami-converting linolenic acid to linoleic in soybean oil [141]. A The ob lighter, "brush" hydrogenation is used for the latter pur-nants, pigments, metals, and oxidation products before the pose. oil is sent to the deodorizer. Removal of sulfur is especial-Most of the catalysts that assist hydrogenation are nick-ly important before hydrogenation of canola and rapeseed el-based, but a variety is available for special applications. oils. Flavor of the oil also is improved. As mentioned in the "Selectivity" refers to ability of the catalyst and process to preceding section, silica hydrogels will adsorb many of sequentially saturate fatty acids on the triglycerides in the these contaminants and spare the bleaching earth. Howev-order of most unsaturated to the fully saturated. For row er, earths are still used for these purposes in installations crop oils, perfect selectivity would be: that have not adopted hydrated silicas. Types of bleaching materials available include [136,139,140]: C18:3 C18:2 C18:1 Linolenic acid Linoleic acid Oleic acid Neutral earths: Basically hydrated aluminum silicates, sometimes called "natural clays" or "earths," and C18:0 fuller's earth, which vary in ability to absorb pigments. Stearic acid Acid-activated earths: Bentonites or montmorillonites, Although typical hydrogenation is not selective, it can be treated with hydrochloric or sulfuric acid to improve favored to a limited degree by selection of catalyst and by their absorption of pigments and other undesirable temperature and pressure of the process. Efficient hydro-components, are most commonly used. genation requires the cleanest possible feed stock (without Activated carbon: Expensive, more difficult to use, but of soaps, phosphatides, sulfur compounds, carbon monoxide, special interest for adsorbing polyaromatic hydrocar-nitrogen compounds, or oxygen-containing compounds) bons from coconut and fish oils. and the purest, driest hydrogen gas possible [140].


Sign in / Sign up

Export Citation Format

Share Document