scholarly journals Relationship between the monoamine oxidase gene overactivity and the other pathophysiological and behavioral parameters implicated in memory deficiency in albino Winstar rats as Alzheimer’s disease model

2021 ◽  
Vol 13 (4) ◽  
pp. 1274-1282
Author(s):  
Halla Abdul-Hadi Chabuk ◽  
Zahraa Isam Jameel

The current study aimed to assess the pathophysiology mechanisms that mediate the effect on albin winstar rats' memory induced by the co -administration of fluoride and aluminum sulfate, as a model of Alzheimer's disease. This was done by assessing monoamine oxidase-A (MAO-A) activity, antioxidant activity, H2O2  and amyloid-β concentration in the hippocampus, embedded deep into the brain's temporal lobe, and level of cytokines in serum. The polymerase chain reaction approach was used to genotyping MAO-A, followed by single -stranded conformational polymorphism (SSCP) coupled with sequencing technique. The experimental animals were divided into two groups: control and treated groups. The uptake of heavy metals led to significantly increased MAO-A activity, amyloid -β deposition, H2O2 and cytokines levels in the treated group. However, the finding showed a significant decrease in antioxidant activity in the treated group. The results indicated that metals caused memory and learning impairments. PCR -SSCP genotyping showed many SNPs and haplotypes of the MAO-A exon 2 region, which showed the MAO-A gene polymorphism changes associated with Alzheimer's disease. The overall results indicated a role of metals to induce oxidative stress stimulating pathophysiological hallmarks in the hippocampus due to an increase in the influx of monoamine oxidase expression, which has been implicated in impaired memory, this study focused on the genetic variation of the exon 2 in monoamine oxidase-A gene and its relationship to Alzheimer's disease with the presence of several single nucleotide polymorphisms that may be related to Alzheimer's disease model in rats.

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3261
Author(s):  
Xiao Liu ◽  
Qian Zhou ◽  
Jia-He Zhang ◽  
Xiaoying Wang ◽  
Xiumei Gao ◽  
...  

Alzheimer’s disease (AD), the most common form of dementia, is characterized by amyloid-β (Aβ) accumulation, microglia-associated neuroinflammation, and synaptic loss. The detailed neuropathologic characteristics in early-stage AD, however, are largely unclear. We evaluated the pathologic brain alterations in young adult App knock-in model AppNL-G-F mice at 3 and 6 months of age, which corresponds to early-stage AD. At 3 months of age, microglia expression in the cortex and hippocampus was significantly decreased. By the age of 6 months, the number and function of the microglia increased, accompanied by progressive amyloid-β deposition, synaptic dysfunction, neuroinflammation, and dysregulation of β-catenin and NF-κB signaling pathways. The neuropathologic changes were more severe in female mice than in male mice. Oral administration of dioscin, a natural product, ameliorated the neuropathologic alterations in young AppNL-G-F mice. Our findings revealed microglia-based sex-differential neuropathologic changes in a mouse model of early-stage AD and therapeutic efficacy of dioscin on the brain lesions. Dioscin may represent a potential treatment for AD.


2020 ◽  
Vol 70 (1) ◽  
Author(s):  
Nobuhiro Watanabe ◽  
Yoshihiro Noda ◽  
Taeko Nemoto ◽  
Kaori Iimura ◽  
Takahiko Shimizu ◽  
...  

AbstractTransient ischemia is an exacerbation factor of Alzheimer’s disease (AD). We aimed to examine the influence of amyloid β (Aβ) deposition around the cerebral (pial) artery in terms of diameter changes in the cerebral artery during transient ischemia in AD model mice (APPNL-G-F) under urethane anesthesia. Cerebral vasculature and Aβ deposition were examined using two-photon microscopy. Cerebral ischemia was induced by transient occlusion of the unilateral common carotid artery. The diameter of the pial artery was quantitatively measured. In wild-type mice, the diameter of arteries increased during occlusion and returned to their basal diameter after re-opening. In AD model mice, the artery response during occlusion differed depending on Aβ deposition sites. Arterial diameter changes at non-Aβ deposition site were similar to those in wild-type mice, whereas they were significantly smaller at Aβ deposition site. The results suggest that cerebral artery changes during ischemia are impaired by Aβ deposition.


2016 ◽  
Vol 113 (43) ◽  
pp. 12292-12297 ◽  
Author(s):  
Loukia Katsouri ◽  
Yau M. Lim ◽  
Katrin Blondrath ◽  
Ioanna Eleftheriadou ◽  
Laura Lombardero ◽  
...  

Current therapies for Alzheimer’s disease (AD) are symptomatic and do not target the underlying Aβ pathology and other important hallmarks including neuronal loss. PPARγ-coactivator-1α (PGC-1α) is a cofactor for transcription factors including the peroxisome proliferator-activated receptor-γ (PPARγ), and it is involved in the regulation of metabolic genes, oxidative phosphorylation, and mitochondrial biogenesis. We previously reported that PGC-1α also regulates the transcription of β-APP cleaving enzyme (BACE1), the main enzyme involved in Aβ generation, and its expression is decreased in AD patients. We aimed to explore the potential therapeutic effect of PGC-1α by generating a lentiviral vector to express human PGC-1α and target it by stereotaxic delivery to hippocampus and cortex of APP23 transgenic mice at the preclinical stage of the disease. Four months after injection, APP23 mice treated with hPGC-1α showed improved spatial and recognition memory concomitant with a significant reduction in Aβ deposition, associated with a decrease in BACE1 expression. hPGC-1α overexpression attenuated the levels of proinflammatory cytokines and microglial activation. This effect was accompanied by a marked preservation of pyramidal neurons in the CA3 area and increased expression of neurotrophic factors. The neuroprotective effects were secondary to a reduction in Aβ pathology and neuroinflammation, because wild-type mice receiving the same treatment were unaffected. These results suggest that the selective induction of PGC-1α gene in specific areas of the brain is effective in targeting AD-related neurodegeneration and holds potential as therapeutic intervention for this disease.


1992 ◽  
Vol 113 (2) ◽  
pp. 190-192
Author(s):  
Yu. V. Burov ◽  
T. D. Baimanov ◽  
L. V. Tat'yanenko ◽  
N. M. Sokolova ◽  
I. M. Tereshchenkova

2020 ◽  
Vol 142 (52) ◽  
pp. 21702-21711
Author(s):  
Mengmeng Ma ◽  
Zhenqi Liu ◽  
Nan Gao ◽  
Zifeng Pi ◽  
Xiubo Du ◽  
...  

NeuroImage ◽  
2009 ◽  
Vol 44 (4) ◽  
pp. 1304-1311 ◽  
Author(s):  
D HYDE ◽  
R DEKLEINE ◽  
S MACLAURIN ◽  
E MILLER ◽  
D BROOKS ◽  
...  

2019 ◽  
Vol 70 (3) ◽  
pp. 937-952 ◽  
Author(s):  
Kaori Taniguchi ◽  
Fumiko Yamamoto ◽  
Takuya Arai ◽  
Jinwei Yang ◽  
Yusuke Sakai ◽  
...  

2019 ◽  
Vol 18 (8) ◽  
pp. 643-654 ◽  
Author(s):  
Reeta ◽  
Seung Cheol Baek ◽  
Jae Pil Lee ◽  
T.M. Rangarajan ◽  
Ayushee ◽  
...  

Background: Chalcones are considered as the selective scaffold for the inhibition of MAO-B. Objective: A previously synthesized ethyl acetohydroxamate-chalcones (L1-L22) were studied for their inhibitory activities against human recombinant monoamine oxidase A and B (hMAO-A and hMAO-B, respectively) and acetylcholinesterase (AChE) as multi-target directed ligands for the treatment of Alzheimer’s Disease (AD). Methods: Enzyme inhibition studies of MAO-A, MAO-B and AChE is carried out. Computational studies such as Molecular docking, Molecular Mechanics/Generalized Born Surface Area calculations, ADMET prediction, and protein target prediction are also performed. Results: Among the screened compounds, compound L3 has most potent hMAO-B inhibition with an IC50 value of 0.028 ± 0.0016 µM, and other compounds, L1, L2, L4, L8, L12, and L21 showed significant potent hMAO-B inhibition with IC50 values of 0.051 ± 0.0014, 0.086 ± 0.0035, 0.036 ± 0.0011, 0.096 ± 0.0061, 0.083 ± 0.0016, and 0.038 ± 0.0021 µM, respectively. On the other hand, among the tested compounds, compound L13 showed highest hMAO-A inhibition with an IC50 value of 0.51± 0.051 µM and L9 has a significant value of 1.85 ± 0.045 µM. However, the compounds L3 and L4 only showed high selectivities for hMAO-B with Selectivity Index (SI) values of 621.4 and 416.7, respectively. Among the substituents in ring A of ethyl acetohydroxamate-chalcones (L1-L9), F atom at p-position (L3) showed highest inhibitory effect against hMAO-B. This result supports the uniqness and bizarre behavior of fluorine. Moreover, chalcones L3, L4, L9, L11, and L12 showed potential AChE inhibitory effect with IC50 values of 0.67, 0.85, 0.39, 0.30, and 0.45 µM, respectively. Inhibitions of hMAO-B by L3 or L4 were recovered to the level of the reversible reference (lazabemide), and were competitive with Ki values of 0.0030 ± 0.0002 and 0.0046 ± 0.0005 µM, respectively. Inhibitions of AChE by L3 and L11 were of the competitive and mixed types with Ki values of 0.30 ± 0.044 and 0.14 ± 0.0054 µM, respectively. Conclusion: The studies indicated that L3 and L4 are considered to be promising multitarget drug molecules with potent, selective, and reversible competitive inhibitors of hMAO-B and with highly potent AChE inhibitory effect.


Sign in / Sign up

Export Citation Format

Share Document