scholarly journals Effect of cold stress on boro rice seedlings

2017 ◽  
Vol 9 (2) ◽  
pp. 1036-1041 ◽  
Author(s):  
Priyanka Kumari ◽  
H. K. Jaiswal

Cold stress at seedling stage is a major constraint in boro rice production. Nine boro rice lines were crossed in diallel fashion excluding reciprocals to obtain 36 crosses. All the 36 crosses along with parents were grown in nursery in three seasons (boro-2014, kharif-2015 and boro-2015). Performance of seedlings for survival per cent, chlorophyll content, relative water content, membrane stability index was recorded just before transplanting in all the three seasons. Scoring for cold tolerance was done in both boro seasons. Gautam showed highest survival rate over three seasons. Among crosses, IR 64 x Krishna Hamsa showed highest survival (84%) in boro-2014, MTU 1010 x Jaya (86.33%) in boro-2015 and MTU 1010 x Krishna Hamsa (95.67%) in kharif-2015. Jaya x Krishna Hamsa was most cold tolerant cross over both boro seasons. Significant positive correlation was observed among survival per cent, chlorophyll content, relative water content and membrane stability index over seasons.

2011 ◽  
Vol 57 (No. 3) ◽  
pp. 101-107 ◽  
Author(s):  
W.M. Bhutta

Soil salinity and semi-arid and arid climate of Pakistan is a major constraint in agriculture and predominantly in foodstuff production. It limits crop yield and use of land previously uncultivated. Wheat is moderately salt tolerant. A great variation was observed between and within the cultivars (genotypes: S-24 salt tolerant and DN-27 salt sensitive) in relationship to the choice of salinity level (control and treatments: in increment of 25 mol/m<sup>3</sup> NaCl/day to a final level of 80 and 160 mol/m<sup>3 </sup>NaCl into the nutrient solution) that will be used for screening purpose. Relative water content (RWC), membrane stability index and the activities of some antioxidant enzymes were determined after 20 and 40 days of salt stress exposure. As a result of activity enzymes, superoxide dismutase (SOD), peroxidase (POD) and catalase increased in S-24 with the increase of salt stress, while in DN-27 all the enzymes showed constant activity at all the stress levels. Meanwhile, relative water content and membrane stability index decrease the value as well as they increases the stress levels. It can be concluded that all three antioxidant enzymes were limiting factors for these genotypes and these reasons also led to the salt sensitivity in DN-27. Different selection methods should be applied to improve different traits in different conditions in wheat.


2015 ◽  
Vol 48 (1) ◽  
pp. 107-114 ◽  
Author(s):  
S. Parvin ◽  
T. Javadi ◽  
N. Ghaderi

Abstract Drought is one of the critical environmental stresses that affect growth and development of plants. Plants are damaged directly and indirectly under drought stress. Increasing water stress tolerance in plants is crucial. The aim of this study was to investigate the effects of different water stress levels (-1, -5, and -10 bars) and paclobutrazol application (0 and 50 mg-1) on strawberry cv. Paros. According to analyses of variance there were significant effects of drought stress and paclobutrazol application on leaf area, leaf dry weight, leaf relative water content (RWC), cell membrane stability index (MSI), proline and protein content of leaves. Leaf area, leaf dry weight, leaf relative water content and cell membrane stability index decreased in drought stress, especially at -10 bars. Proline and protein contents were enhanced by increasing water stress levels. Paclobutrazol application increased leaf relative water content and cell membrane stability index, proline and protein contents of leaves. Leaf relative water content was 68.77% in -10 bars drought stress that increased to 79% in paclobutrazol treatment. Also, cell membrane stability index was 69.65% in severe drought stress and reached to 77% in paclobutrazol treatment. According to the results pacloburazol is a benefit substance to ameliorate drought stress effects in strawberry cv. Paros.


2020 ◽  
Vol 2 (2) ◽  
pp. 71-78
Author(s):  
Ehsan Ul Haq ◽  
Fayyaz Ul Hassan ◽  
Mukhtar Ahmed ◽  
Abdul Mannan Hamzah ◽  
Fahad Ali Fayyaz ◽  
...  

The present study was designed to evaluate the effect of different concentrations of Silica gel on the growth and yield of Camelina sativa. A pot experiment was laid out in Completely Randomized Design (CRD) with three replications at Nanotechnology Laboratory, Department of Agronomy, PMAS Arid Agriculture University Rawalpindi. The experiment consisted of 4 levels (0.15 mg/g, 0.30 mg/g, 0.45 mg/g and 0.60 mg/g) of each mentioned nutrient along with control. The data were recorded and analyzed according to recommended procedure for following parameters viz., germination %, root and shoot length (cm), root and shoot biomass (g), relative water content of leaf and leaf membrane stability index. It was observed that 0.60 mg/g silica gel application increased the seed germination (80%), root length (6.67) cm, shoot length (35.33) cm, root biomass (1.7) g, shoot biomass (5.57) g, relative water content of leaf (0.69) and leaf membrane stability index (0.07). The study concluded that significant effect of silica gel application is crucial and important to improve vegetative attributes of false flax.


2013 ◽  
Vol 59 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Arman Pazuki ◽  
Mohammad Sedghi ◽  
Fatemeh Aflaki

To evaluate phytohormones effects on stomatal conductance, chlorophyll fluorescence, membrane stability, relative water content and chlorophyll content under salinity, a factorial experiment with 4 replicates was conducted. Treatments were salinity (0, 3.5 and 7 dS/m), phytohormones (control, gibberellic acid and abscisic acid) and wheat cultivars (Gascogen, Zagros, and Kuhdasht). Results showed that a high level of salinity increased chlorophyll fluorescence and relative water content, while membrane stability, chlorophyll content, and stomatal conductance were decreased. Abscisic acid treatment had more effective role in membrane stability. Although membrane stability was much more under gibberellic acid treatment, restoration of membrane stability was considerable under abscisic acid treatment for Gascogen and Kuhdasht cultivars. Spraying of gibberellic acid induced the highest chlorophyll content in the three salinity levels and all of the cultivars. The maximum amount of stomatal conductance was achieved under gibberellic acid treatment. Abscisic acid caused less chlorophyll fluorescence in comparison to gibberellic acid. About relative water content, abscisic acid was effective in high salinity levels so that it caused stomatal closure, which reduced water loss and maintained turgor in plants.


2018 ◽  
Vol 16 (1) ◽  
pp. 1-6 ◽  
Author(s):  
I Nowsherwan ◽  
G Shabbir ◽  
SI Malik ◽  
M Ilyas ◽  
MS Iqbal ◽  
...  

The present study was designed to evaluate the changes in different physiological traits such as proline content, cell membrane stability, relative water content and chlorophyll content under drought stress in sixteen wheat genotypes. Wheat genotypes (99FJ-03, Marvi-2000, WC- 13, WC-24, WC-19, Faisalabad-85, Kaghan, Bahawalpur, Zarlashta, Punjab-96, Shafaq, Maxi-pak, WC-20, Chenab-70, AUR-0809, Chakwal) were sown during rabiseason of 2013-14 following randomized complete block design with three replications. Drought stress was induced by withholding water for 30 days at heading and anthesis stage. Genotypes were significant for different physiological traits like relative water content, proline content, cell membrane stability and chlorophyll content under drought stress which indicated that some genotypes were more tolerant against drought stress than others. Among tested wheat genotypes, Maxi-Pak was found to be potential variety for relative water content, cell membrane stability, chlorophyll content and yield. Hence, it can be used in future wheat breeding programme for developing drought tolerant genotypes.SAARC J. Agri., 16(1): 1-6 (2018)


2012 ◽  
Vol 32 (2) ◽  
pp. 366-373 ◽  
Author(s):  
María Roberta Ansorena ◽  
María Victoria Agüero ◽  
María Grabriela Goñi ◽  
Sara Roura ◽  
Alejandra Ponce ◽  
...  

During postharvest, lettuce is usually exposed to adverse conditions (e.g. low relative humidity) that reduce the vegetable quality. In order to evaluate its shelf life, a great number of quality attributes must be analyzed, which requires careful experimental design, and it is time consuming. In this study, the modified Global Stability Index method was applied to estimate the quality of butter lettuce at low relative humidity during storage discriminating three lettuce zones (internal, middle, and external). The results indicated that the most relevant attributes were: the external zone - relative water content, water content , ascorbic acid, and total mesophilic counts; middle zone - relative water content, water content, total chlorophyll, and ascorbic acid; internal zone - relative water content, bound water, water content, and total mesophilic counts. A mathematical model that takes into account the Global Stability Index and overall visual quality for each lettuce zone was proposed. Moreover, the Weibull distribution was applied to estimate the maximum vegetable storage time which was 5, 4, and 3 days for the internal, middle, and external zone, respectively. When analyzing the effect of storage time for each lettuce zone, all the indices evaluated in the external zone of lettuce presented significant differences (p < 0.05). For both, internal and middle zones, the attributes presented significant differences (p < 0.05), except for water content and total chlorophyll.


2009 ◽  
Vol 3 (3) ◽  
pp. 345-350 ◽  
Author(s):  
M. Hassanzadeh ◽  
A. Ebadi ◽  
M. Panahyan-e-Kivi ◽  
A.G. Eshghi ◽  
Sh. Jamaati-e-Somarin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document