scholarly journals Assessing the Moisture and Aging Susceptibility of Cold Mix Asphalt Concrete

2021 ◽  
Vol 27 (2) ◽  
pp. 59-72
Author(s):  
Zahraa Ahmed Samor ◽  
Saad Issa Sarsam

Laboratory experience in Iraq with cold asphalt concrete mixtures is very limited. The design and use of cold mixed asphalt concrete had no technical requirements. In this study, two asphalt concrete mixtures used for the base course were prepared in the laboratory using conventional cold-mixing techniques to test cold asphalt mixture (CAM) against aging and moisture susceptibility. Cold asphalt mixtures specimens have been prepared in the lab with cutback and emulsion binders, different fillers, and curing times. Based on the Marshal test result, the cutback proportion was selected with the filler, also based on the Marshal test emulsion. The first mixture was medium setting cationic emulsion (MSCE) as a binder, hydrated lime, and ordinary portland cement as a filler (7.95% MSCE + 2%HL + 3% OPC). The second mixture used was medium curing cutback (MC-250) as a binder and ordinary portland cement as a filler (5.18% MC 250 + 5% OPC). The indirect tensile strength (ITS) of the samples was measured at 25 ° C. It was found that the cold mix with the MSCE binder had a high ITS value relative to the cold mix with the cutback asphalt binder (MC-250). The dry mixture of MSCE  ITS was approximately 3.77 times the dry mixture of MC-250. The MSCE wet mix was about 4.2 times the wet MC-250 mix. Tensile strength ratio result (TSR %) for the MSCE binder mix and the cutback MC-250 binder mix showed that the MSCE mix has a reasonable moisture resistance (77% ) compared to the MC-250 mix (69.2 %). The aging test and aging ratio result showed that asphalt binder oxidation has a significant effect on age-related pavement degradation as it changes the time-temperature relationship depending on the viscoelastic properties of the asphalt binder. The result clearly showed that the MSCE binder mix had a high resistance to aging (440 Kpa) compared to the cutback (MC-250) binder mix (110 Kpa). In contrast, the MSCE aging ratio (90 %) was higher than the MC-250 ratio (85 %).

2019 ◽  
Vol 9 (4) ◽  
pp. 628 ◽  
Author(s):  
Lívia Garcia-Gil ◽  
Rodrigo Miró ◽  
Félix Pérez-Jiménez

Thin asphalt concrete overlays are a maintenance technique that mainly restore the functional properties of pavements. One of the main issues in thin overlays is reflective cracking that can cause early deterioration and reduce their service life. For this reason, the purpose of this investigation is to evaluate the effect of material selection on cracking performance of asphalt concrete mixtures for thin overlays. In particular, this paper evaluates the role of aggregate skeleton gradation. The study of the effect of aggregate gradation was divided into two stages: (1) fine fraction content and (2) maximum nominal aggregate size. Based on this, up to seven asphalt mixture gradations were designed and evaluated through the Fénix test at different test temperatures. The results showed a significant correlation between the fine fraction content, and maximum nominal aggregate size, and the cracking performance of the asphalt concrete mixtures. Mixtures manufactured with a low content of fine aggregates, as well as small nominal maximum size, experienced a further improvement of their toughness. These results reflected the importance of considering not only the effect of asphalt binder and environmental conditions but also aggregate gradation in the design of asphalt concrete mixtures in order to achieve a desirable cracking performance.


2013 ◽  
Vol 717 ◽  
pp. 21-26 ◽  
Author(s):  
Maria del Pilar Durante Ingunza ◽  
Olavo Francisco dos Santos Júnior ◽  
Cibele Gouveia Costa

The aim of the present study is to assess the incorporation of kaolin processing waste as partial substitute for aggregates in asphalt concrete. Mixtures elaborated from the conventional mixture with the gradual incorporation of kaolin processing waste (5 to 40%) were evaluated by volumetric composition, mechanical behavior and susceptibility to moisture tests, obeying current Brazilian norms, according with international standards. The results show that the coarse kaolin waste displays grains with varying diameters, and, as such, can substitute part of the conventional aggregates and filler used in an asphalt mixture. Moreover, its mineralogical composition showed the same minerals in the composition of conventional aggregates used in paving. The assessment of the mechanical behavior of these mixtures indicate that the increased waste levels in the mixtures studied caused an increase in stability and a reduction in tensile strength. When susceptibility to moisture was considered, the results indicate that up to 25% of residue can be used as a substitute for conventional aggregates.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1266
Author(s):  
Wentong Huang ◽  
Xiao Liu ◽  
Shaowei Zhang ◽  
Yu Zheng ◽  
Qile Ding ◽  
...  

The construction of sponge city is a major green innovation to implement the concept of sustainable development. In this study, the road performance of permeable asphalt concrete (PAC), which displays pronounced water permeability and noise reduction that are favorable for sponge cities, has been improved with a two-fold modification using styrene–butadiene–styrene (SBS) and crumb rubber (CR). Four percent SBS and three different ratios (10%, 15%, and 20%) of CR have been used to modify the virgin asphalt binder. The Marshall design has been followed to produce PAC samples. To evaluate the asphalt binder performance, multiple-stress creep-recovery (MSCR) test, linear amplitude sweep (LAS) test, and engineering property test programs including softening point test, penetration test, and rotational viscosity test have been conducted. Freeze–thaw splitting test, Hamburg wheel-tracking test, resilient modulus test, and permeability coefficient test have been performed to evaluate the asphalt mixture performance. The test results show that the addition of SBS and CR reduces the permeability coefficient, but significantly improves the high temperature performance, fatigue performance, and rutting resistance as well as the resilient modulus. However, the optimum rubber content should not exceed 15%. Meanwhile, after adding CR and SBS modifier, the indirect tensile strength (ITS) and tensile strength ratio (TSR) increase. It indicates that the moisture stability and crack resistance have been improved by the composite modification effect.


2019 ◽  
Vol 2 (2) ◽  
pp. 214
Author(s):  
Faisal Abdul Yusuf ◽  
Ahmad Ridwan ◽  
Yosef Cahyo Setianto Poernomo

Asphalt Concrete (Hotmix) is a mixture of coarse aggregate, fine aggregate, and filler (filler) with asphalt binder in high-temperature conditions (heat) with a composition that is examined and regulated by technical specifications. In this research, concrete asphalt mixture was added with dolomite powder as a  mixture in filler to be an alternative material for portland cement filler mixture to minimize the price of portal and cement, which is increasingly expensive, and brantas sand as fine aggregate to study and determine the effect of dolomite powder and brantas sand in the mixture asphalt concrete with the addition of levels of 5%, 10%, and 15%. From the results of the study obtained the value of adding dolomite powder with levels of 5%, 10%, 15% at VIM values of 11.99%, 15.28%, 10.29 , VMA value of 26.30%, 29.05%,  24.88%,  VFB  value  of  54.49%,  48.33%,  58.81%,  stability  value  of  3402.503  kg, 3294.030 kg, 1958.946 kg, MQ value 733,8130 kg, 456,1891 kg, 471,9089 kg and from the testing chart the optimum content is at levels 5.5% to 8% and the maximum level is at 5% level.Aspal  Beton  (Hotmix)  adalah  campuran  agregat  kasar,  agregat  halus,  dan  bahan pengisi (Filler) dengan bahan pengikat aspal dalam kondisi suhu tinggi (panas) dengan komposisi yang diteliti dan diatur oleh spesifikasi teknis. Pada penelitian ini, campuran aspal beton diberi bahan tambahan serbuk dolomite sebagai campuran pada filler agar menjadi bahan alternativ campuran filler semen portaland untuk meminimalisir harga semen portaland yang  semakin  mahal  dan  pasir  brantas  sebagai  agregat  halus  untuk  mempelajari  dan mengetahui pengaruh serbuk dolomit dan pasir brantas pada campuran aspal beton dengan penambahan kadar 5%, 10%, dan 15%.dari hasil penelitian didapat nilai penambahan serbuk dolomite dengan kadar  5%, 10%, 15% pada nilai VIM sebesar 11,99%, 15,28%, 10,29, nilai VMA 26,30%, 29,05%, 24,88%, nilai VFB 54,49%, 48,33%, 58,81%, nilai stabilitas 3402,503 kg, 3294,030 kg, 1958,946 kg, nilai MQ 733,8130 kg, 456,1891 kg, 471,9089 kg dan dari grafik pengujian kadar optimum pada kadar 5,5% sampai 8% dan kadar maximum pada kadar 5%.


2018 ◽  
Vol 24 (5) ◽  
pp. 145 ◽  
Author(s):  
Amjad H. Albayati

Warm mix asphalt (WMA) is relatively a new technology which enables the production and compaction of asphalt concrete mixtures at temperatures 15-40 °C lower than that of traditional hot mix asphalt HMA. In the present work, six asphalt concrete mixtures were produced in the mix plant (1 ton each) in six different batches. Half of these mixes were WMA and the other half were HMA.  Three types of fillers (limestone dust, Portland cement and hydrated lime) were used for each type of mix. Samples were then taken from these patches and transferred to lab for performance testing which includes: Marshall characteristics, moisture susceptibility (indirect tension test), resilient modulus, permanent deformation (axial repeated load test) and fatigue characteristics (third point flexural beam test). The obtained results indicated that the performance of WMA is enhanced when using the hydrated lime as filler in comparison with the limestone dust and Portland cement fillers. Better fatigue life was obtained for WMA using hydrated lime filler in comparison with HMA. Regardless the filler type, the Marshall properties of WMA satisfy the requirement of local specification, other properties of WMA were relatively lower than the HMA.  


2013 ◽  
Vol 6 (1) ◽  
pp. 50-61
Author(s):  
Amer M. Ibrahem ◽  
Shakir A. Al-Mishhadani ◽  
Zeinab H.Naji

This investigation aimed to study the effect of nano metakaolin ( NMK ) on some properties (compressive strength ,splitting tensile strength & water absorption ) of concrete. The nano metakaolin (NMK) was prepared by thermal activation of kaolin clay for 2 hours at 750 Ċ. The cement used in this investigation consists of ordinary Portland cement (OPC). The OPC was partially substituted by NMK of ( 3, 5 & 10%) by weight of cement. The C45 concrete was prepared , using water/cement ratio ( W/c) of (0.53) .The Water absorption was tested at 28 days while the tests (compressive strength ,splitting tensile strength) were tested at ages of (7, 28, 60,& 90) days . The compressive strength and splitting tensile strength of concrete with NMK were higher than that of reference concrete with the same W/c ratio.The improvement in the compressive strength when using NMK was (42.2, 55.8 , 63.1% ) at age 28 days for ( 3%, 5%, &10% ) replacement of NMK respectively whereas the improvement in the splitting tensile strength was (0% , 36% & 46.8 %) at age of 28 days when using (3%, 5%, &10% ) NMK respectively. The improvement in the water absorption was (16.6%, 21.79%, &25.6 ) when using (3, 5, &10% )NMK.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1707 ◽  
Author(s):  
Yu-You Wu ◽  
Longxin Que ◽  
Zhaoyang Cui ◽  
Paul Lambert

Concrete made from ordinary Portland cement is one of the most widely used construction materials due to its excellent compressive strength. However, concrete lacks ductility resulting in low tensile strength and flexural strength, and poor resistance to crack formation. Studies have demonstrated that the addition of graphene oxide (GO) nanosheet can effectively enhance the compressive and flexural properties of ordinary Portland cement paste, confirming GO nanosheet as an excellent candidate for using as nano-reinforcement in cement-based composites. To date, the majority of studies have focused on cement pastes and mortars. Only limited investigations into concretes incorporating GO nanosheets have been reported. This paper presents an experimental investigation on the slump and physical properties of concrete reinforced with GO nanosheets at additions from 0.00% to 0.08% by weight of cement and a water–cement ratio of 0.5. The study demonstrates that the addition of GO nanosheets improves the compressive strength, flexural strength, and split tensile strength of concrete, whereas the slump of concrete decreases with increasing GO nanosheet content. The results also demonstrate that 0.03% by weight of cement is the optimum value of GO nanosheet dosage for improving the split tensile strength of concrete.


2015 ◽  
Vol 4 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Ahmed F. Al-Tameemi ◽  
Yu Wang ◽  
Amjad Albayati

Abstract Flexible or asphalt concrete pavement is the paving system most widely adopted all over the world. It has been recognized that there are many different types of the factors affecting the performance and durability of asphalt concrete pavement, including the service conditions, such as: the variation of temperature from mild to extremes and the repeated excessive axle loading as well as the inadequate quality of the raw materials. All of these when combined together are going to accelerate the occurrence of distresses in flexible pavement such as permanent deformation and fatigue cracking. As the result, there has an urgent need to enhance the ability of asphalt concrete mixture to resist distresses happened in pavement. Use of additives is one of the techniques adopted to improve pavement properties. It has been found that hydrated lime might be one of the effective additives because it is widely available and relatively cheap compared to other modifiers like polymers. This paper presents an experimental study of the hydrated-lime modified asphalt concrete mixtures. Five different percentages of the hydrated lime additive were investigated, namely (1, 1.5, 2, 2.5 and 3 percent). The hydrated lime additive was used as partial replacement of limestone filler by total weight of the aggregate. The designed Hot Mix Asphalt (HMA) concretes are for the application of three pavement courses, i.e. Surface, Leveling and Base. These mixtures are designed and tested following Marshall procedure and uniaxial repeated loading to evaluate permanent deformation at different temperatures of 20°C, 40°C and 60°C. The experimental results show that the addition of hydrated lime as a partial replacement of ordinary limestone mineral filler results a significant improvement on mechanical properties and the resistant to permanent deformation of the designed asphalt concrete mixtures.


2010 ◽  
Vol 168-170 ◽  
pp. 2654-2657
Author(s):  
Xiao Jun Li ◽  
Li Hua Jiang ◽  
Yun Xian Wang

In this paper, a new Indirect tensile tester (IDT) which can be cooperated with Industrial Computered Tomography (IDT) is developed. The new tester uses a set of sliders to transfer the vertical stress to hoop stress which applied to a hollow cylindrical sample. The micro-crack will be appeared and propagated in the weakest direction of hollow cylindrical sample with the increase of vertical stress and tensile strength can calculated with the maximum vertical stress. Due to the existence of central slider, the stress state of hollow cylindrical sample will be kept even after unloading and the mixture sample would not have recovery when it is moved for scanning with ICT. The test results show that the combination of the developed ICT with IDT will help obtain more useful information on understanding the nature of asphalt concrete with different tensile damage stages.


2016 ◽  
Vol 28 (5) ◽  
pp. 04015205 ◽  
Author(s):  
Akshay Gundla ◽  
Jose Medina ◽  
Padmini Gudipudi ◽  
Ryan Stevens ◽  
Ramadan Salim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document