Cellular mechanisms of nuclear migration

2017 ◽  
Vol 51 (3) ◽  
pp. 192-201 ◽  
Author(s):  
E. A. Kravets ◽  
A. I. Yemets ◽  
Ya. B. Blume
2021 ◽  
Author(s):  
Francesca Napoli ◽  
Christina M Daly ◽  
Stephanie Neal ◽  
Kyle J McCulloch ◽  
Alexandra Zaloga ◽  
...  

Neurogenesis, the regulation of cellular proliferation and differentiation in the developing nervous system, is the process that underlies the diversity of size and cell type found in animal nervous systems. Our understanding of how this process has evolved is limited because of the lack of high resolution data and live-imaging methods across species. The retina is a classic model for the study of neurogenesis in vertebrates and live-imaging of the retina has shown that during development, progenitor cells are organized in a pseudostratified neuroepithelium and nuclei migrate in coordination with the cell cycle along the apicobasal axis of the cell, a process called interkinetic nuclear migration. Eventually cells delaminate and differentiate within the boundaries of the epithelium. This process has been considered unique to vertebrates and thought to be important in maintaining organization during the development of a complex nervous system. Coleoid cephalopods, including squid, cuttlefish and octopus, have the largest nervous system of any invertebrate and convergently-evolved camera-type eyes, making them a compelling comparative system to vertebrates. Here we have pioneered live-imaging techniques to show that the squid, Doryteuthis pealeii, displays cellular mechanisms during cephalopod retinal neurogenesis that are hallmarks of vertebrate processes. We find that retinal progenitor cells in the squid undergo interkinetic nuclear migration until they exit the cell cycle, we identify retinal organization corresponding to progenitor, post-mitotic and differentiated cells, and we find that Notch signaling regulates this process. With cephalopods and vertebrates having diverged 550 million years ago, these results suggest that mechanisms thought to be unique to vertebrates may be common to highly proliferative neurogenic primordia contributing to a large nervous system.


2020 ◽  
Vol 117 (51) ◽  
pp. 32757-32763
Author(s):  
Mohammad Foteh Ali ◽  
Umma Fatema ◽  
Xiongbo Peng ◽  
Samuel W. Hacker ◽  
Daisuke Maruyama ◽  
...  

After eukaryotic fertilization, gamete nuclei migrate to fuse parental genomes in order to initiate development of the next generation. In most animals, microtubules control female and male pronuclear migration in the zygote. Flowering plants, on the other hand, have evolved actin filament (F-actin)-based sperm nuclear migration systems for karyogamy. Flowering plants have also evolved a unique double-fertilization process: two female gametophytic cells, the egg and central cells, are each fertilized by a sperm cell. The molecular and cellular mechanisms of how flowering plants utilize and control F-actin for double-fertilization events are largely unknown. Using confocal microscopy live-cell imaging with a combination of pharmacological and genetic approaches, we identified factors involved in F-actin dynamics and sperm nuclear migration inArabidopsis thaliana(Arabidopsis) andNicotiana tabacum(tobacco). We demonstrate that the F-actin regulator, SCAR2, but not the ARP2/3 protein complex, controls the coordinated active F-actin movement. These results imply that an ARP2/3-independent WAVE/SCAR-signaling pathway regulates F-actin dynamics in female gametophytic cells for fertilization. We also identify that the class XI myosin XI-G controls active F-actin movement in theArabidopsiscentral cell. XI-G is not a simple transporter, moving cargos along F-actin, but can generate forces that control the dynamic movement of F-actin for fertilization. Our results provide insights into the mechanisms that control gamete nuclear migration and reveal regulatory pathways for dynamic F-actin movement in flowering plants.


2019 ◽  
Author(s):  
Natalie J. Kirkland ◽  
Alice C. Yuen ◽  
Melda Tozluoglu ◽  
Nancy Hui ◽  
Ewa K. Paluch ◽  
...  

SummaryCell divisions are essential for tissue growth. In pseudostratified epithelia, where nuclei are staggered across the tissue, each nucleus migrates apically before undergoing mitosis. Successful apical nuclear migration is critical to preserve tissue integrity during cell division. Most previous investigations have focused on the local cellular mechanisms controlling nuclear migration. Yet, inter-species and inter-organ comparisons of different pseudostratified epithelia suggest global tissue architecture may influence nuclear dynamics, but the underlying mechanisms remain elusive. Here, we use the developing Drosophila wing disc to systematically investigate, in a single epithelial type, how changes in tissue architecture during growth influence mitotic nuclear migration. We observe distinct nuclear dynamics at discrete developmental stages, as epithelial morphology changes. We then use genetic and physical perturbations to show a direct effect of cell density on mitotic nuclear positioning. We also find Rho kinase and Diaphanous, which facilitate mitotic cell rounding in confined cell conditions, are essential for efficient apical nuclear movement. Strikingly, perturbation of Diaphanous causes increasing defects in apical nuclear migration as the tissue grows, and these defects can be reversed by acute physical reduction of cell density. Our findings reveal how the mechanical environment imposed on cells within a tissue alters the molecular and cellular mechanisms adopted by single cells for mitosis. We speculate that mechanical regulation of apical mitotic positioning could be a global mechanism for tissue growth control.


2007 ◽  
Vol 43 ◽  
pp. 105-120 ◽  
Author(s):  
Michael L. Paffett ◽  
Benjimen R. Walker

Several molecular and cellular adaptive mechanisms to hypoxia exist within the vasculature. Many of these processes involve oxygen sensing which is transduced into mediators of vasoconstriction in the pulmonary circulation and vasodilation in the systemic circulation. A variety of oxygen-responsive pathways, such as HIF (hypoxia-inducible factor)-1 and HOs (haem oxygenases), contribute to the overall adaptive process during hypoxia and are currently an area of intense research. Generation of ROS (reactive oxygen species) may also differentially regulate vascular tone in these circulations. Potential candidates underlying the divergent responses between the systemic and pulmonary circulations may include Nox (NADPH oxidase)-derived ROS and mitochondrial-derived ROS. In addition to alterations in ROS production governing vascular tone in the hypoxic setting, other vascular adaptations are likely to be involved. HPV (hypoxic pulmonary vasoconstriction) and CH (chronic hypoxia)-induced alterations in cellular proliferation, ionic conductances and changes in the contractile apparatus sensitivity to calcium, all occur as adaptive processes within the vasculature.


2020 ◽  
Vol 134 (12) ◽  
pp. 1403-1432 ◽  
Author(s):  
Manal Muin Fardoun ◽  
Dina Maaliki ◽  
Nabil Halabi ◽  
Rabah Iratni ◽  
Alessandra Bitto ◽  
...  

Abstract Flavonoids are polyphenolic compounds naturally occurring in fruits and vegetables, in addition to beverages such as tea and coffee. Flavonoids are emerging as potent therapeutic agents for cardiovascular as well as metabolic diseases. Several studies corroborated an inverse relationship between flavonoid consumption and cardiovascular disease (CVD) or adipose tissue inflammation (ATI). Flavonoids exert their anti-atherogenic effects by increasing nitric oxide (NO), reducing reactive oxygen species (ROS), and decreasing pro-inflammatory cytokines. In addition, flavonoids alleviate ATI by decreasing triglyceride and cholesterol levels, as well as by attenuating inflammatory mediators. Furthermore, flavonoids inhibit synthesis of fatty acids and promote their oxidation. In this review, we discuss the effect of the main classes of flavonoids, namely flavones, flavonols, flavanols, flavanones, anthocyanins, and isoflavones, on atherosclerosis and ATI. In addition, we dissect the underlying molecular and cellular mechanisms of action for these flavonoids. We conclude by supporting the potential benefit for flavonoids in the management or treatment of CVD; yet, we call for more robust clinical studies for safety and pharmacokinetic values.


Pneumologie ◽  
2010 ◽  
Vol 64 (01) ◽  
Author(s):  
N Weichert ◽  
E Kaltenborn ◽  
A Hector ◽  
M Woischnik ◽  
S Moslavac ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document