Estimation of flight altitude in the aperture synthesizing mode for altimeter with continuous probing signal

2014 ◽  
Vol 57 (11) ◽  
pp. 489-494
Author(s):  
M. Yu. Nesterov ◽  
A. A. Monakov
Author(s):  
Ryan Xiao ◽  
William Wang ◽  
Ang Li ◽  
Shengqiu Xu ◽  
Binghai Liu

Abstract With the development of semiconductor technology and the increment quantity of metal layers in past few years, backside EFA (Electrical Failure Analysis) technology has become the dominant method. In this paper, abnormally high Signal Noise Ratio (SNR) signal captured by Electro-Optical Probing (EOP)/Laser Voltage Probing (LVP) from backside is shown and the cause of these phenomena are studied. Based on the real case collection, two kinds of failure mode are summarized, and simulated experiments are performed. The results indicate that when a current path from power to ground is formed, the high SNR signal can be captured at the transistor which was on this current path. It is helpful of this consequence for FA to identify the failure mode by high SNR signal.


Drones ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 71
Author(s):  
Tomoko Saitoh ◽  
Moyu Kobayashi

Recently, drone technology advanced, and its safety and operability markedly improved, leading to its increased application in animal research. This study demonstrated drone application in livestock management, using its technology to observe horse behavior and verify the appropriate horse–drone distance for aerial behavioral observations. Recordings were conducted from September to October 2017 on 11 horses using the Phantom 4 Pro drone. Four flight altitudes were tested (60, 50, 40, and 30 m) to investigate the reactions of the horses to the drones and observe their behavior; the recording time at each altitude was 5 min. None of the horses displayed avoidance behavior at any flight altitude, and the observer was able to distinguish between any two horses. Recorded behaviors were foraging, moving, standing, recumbency, avoidance, and others. Foraging was the most common behavior observed both directly and in the drone videos. The correlation coefficients of all behavioral data from direct and drone video observations at all altitudes were significant (p < 0.01). These results indicate that horse behavior can be discerned with equal accuracy by both direct and recorded drone video observations. In conclusion, drones can be useful for recording and analyzing horse behavior.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ali Dinc ◽  
Yousef Gharbia

Abstract In this study, exergy efficiency calculations of a turboprop engine were performed together with main performance parameters such as shaft power, specific fuel consumption, fuel flow, thermal efficiency etc., for a range of flight altitude (0–14 km) and flight speeds (0–0.6 Mach). A novel exergy efficiency formula was derived in terms of specific fuel consumption and it is shown that these two parameters are inversely proportional to each other. Moreover, a novel exergy efficiency and thermal efficiency relation was also derived. The relationship showed that these two parameters are linearly proportional to each other. Exergy efficiency of the turboprop engine was found to be in the range of 23–33%. Thermal efficiency of the turboprop engine was found to be around 25–35%. Exergy efficiency is higher at higher speeds and altitude where the specific fuel consumption is lower. Conversely, exergy efficiency of the engine is lower for lower speeds and altitude where the specific fuel consumption is higher.


Aerospace ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 94 ◽  
Author(s):  
Hriday Bavle ◽  
Jose Sanchez-Lopez ◽  
Paloma Puente ◽  
Alejandro Rodriguez-Ramos ◽  
Carlos Sampedro ◽  
...  

This paper presents a fast and robust approach for estimating the flight altitude of multirotor Unmanned Aerial Vehicles (UAVs) using 3D point cloud sensors in cluttered, unstructured, and dynamic indoor environments. The objective is to present a flight altitude estimation algorithm, replacing the conventional sensors such as laser altimeters, barometers, or accelerometers, which have several limitations when used individually. Our proposed algorithm includes two stages: in the first stage, a fast clustering of the measured 3D point cloud data is performed, along with the segmentation of the clustered data into horizontal planes. In the second stage, these segmented horizontal planes are mapped based on the vertical distance with respect to the point cloud sensor frame of reference, in order to provide a robust flight altitude estimation even in presence of several static as well as dynamic ground obstacles. We validate our approach using the IROS 2011 Kinect dataset available in the literature, estimating the altitude of the RGB-D camera using the provided 3D point clouds. We further validate our approach using a point cloud sensor on board a UAV, by means of several autonomous real flights, closing its altitude control loop using the flight altitude estimated by our proposed method, in presence of several different static as well as dynamic ground obstacles. In addition, the implementation of our approach has been integrated in our open-source software framework for aerial robotics called Aerostack.


Sign in / Sign up

Export Citation Format

Share Document