Resistance to Hydrogen Cracking of Rolled Structural Steel after Heat Processing

2021 ◽  
Vol 51 (3) ◽  
pp. 211-216
Author(s):  
V. V. Naumenko ◽  
A. V. Muntin ◽  
O. A. Baranova ◽  
K. S. Smetanin
2015 ◽  
Vol 15 (3) ◽  
pp. 33-40
Author(s):  
T. Lipiński ◽  
A. Wach ◽  
E. Detyna

Abstract The article discusses the effect of large oxide impurities (a diameter larger than 10 μm in size) on the fatigue resistance of structural steel of high purity during rotary bending. The study was performed on 7 heats produced in an industrial plant. The heats were produced in 140 ton electric furnaces. All heats were desulfurized. The experimental material consisted of semi-finished products of high-grade, carbon structural steel with: manganese, chromium, nickel, molybdenum and boron. Steel sections with a diameter of 18 mm were hardened from austenitizing by 30 minutes in temperature 880°C and tempered at a temperature of 200, 300, 400, 500 and 600°C for 120 minutes and air-cooled. The experimental variants were compared in view of the heat treatment options. Fatigue tests were performed with the use of a rotary bending machine at a frequency of 6000 cpm. The results were statistical processed and presented in graphic form. This paper discusses the results of the relative volume of large impurities, the fatigue strength for various heat processing options.


2020 ◽  
Vol 54 (6) ◽  
pp. 410-416
Author(s):  
Joyce M. Hansen ◽  
Scott Weiss ◽  
Terra A. Kremer ◽  
Myrelis Aguilar ◽  
Gerald McDonnell

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2, has challenged healthcare providers in maintaining the supply of critical personal protective equipment, including single-use respirators and surgical masks. Single-use respirators and surgical masks can reduce risks from the inhalation of airborne particles and microbial contamination. The recent high-volume demand for single-use respirators and surgical masks has resulted in many healthcare facilities considering processing to address critical shortages. The dry heat process of 80°C (176°F) for two hours (120 min) has been confirmed to be an appropriate method for single-use respirator and surgical mask processing.


2010 ◽  
Vol 57 (1) ◽  
pp. 1-20
Author(s):  
Małgorzata Skorupa ◽  
Tomasz Machniewicz

Application of the Strip Yield Model to Crack Growth Predictions for Structural SteelA strip yield model implementation by the present authors is applied to predict fatigue crack growth observed in structural steel specimens under various constant and variable amplitude loading conditions. Attention is paid to the model calibration using the constraint factors in view of the dependence of both the crack closure mechanism and the material stress-strain response on the load history. Prediction capabilities of the model are considered in the context of the incompatibility between the crack growth resistance for constant and variable amplitude loading.


Sign in / Sign up

Export Citation Format

Share Document