Fine structure of the spectra of magnetic particles in the vortex state and their ordered arrays

2007 ◽  
Vol 71 (11) ◽  
pp. 1494-1496
Author(s):  
B. A. Ivanov ◽  
P. V. Bondarenko ◽  
A. Yu. Galkin ◽  
C. E. Zaspel ◽  
D. D. Sheka
2019 ◽  
Author(s):  
Danijela Gregurec ◽  
Alexander W. Senko ◽  
Andrey Chuvilin ◽  
Pooja Reddy ◽  
Ashwin Sankararaman ◽  
...  

In this work, we demonstrate the application of anisotropic magnetite nanodiscs (MNDs) as transducers of torque to mechanosensory cells under weak, slowly varying magnetic fields (MFs). These MNDs possess a ground state vortex configuration of magnetic spins which affords greater colloidal stability due to eliminated dipole-dipole interactions characteristic of isotropic magnetic particles of similar size. We first predict vortex magnetization using micromagnetic stimulations in sub-micron anisotropic magnetite particles and then use electron holography to experimentally investigate the magnetization of MNDs 98–226 nm in diameter. When MNDs are coupled to MFs, they transition between vortex and in-plane magnetization allowing for the exertion of the torque on the pN scale, which is sufficient to activate mechanosensitive ion channels in cell membranes.<br>


2013 ◽  
Vol 1617 ◽  
pp. 193-197
Author(s):  
Mishel Morales Meza ◽  
Paul P. Horley ◽  
Alexander Sukhov

ABSTRACTMagnetic properties at nano-scale provide a whole spectrum of new phenomena that can be beneficial for spintronic devices characterized with ultra-short response time, high sensitivity to magnetic field and miniature size. The properties and stability of a magnetic system can be enhanced by creating ordered arrays of ferromagnetic nano-particles. Here we report a considerable reduction of coercitivity for a magnetic array using triangular, square and hexagonal particle arrangement. The reduction of coercitivity can be explained by fine-tuning of dipole-dipole interaction between magnetic particles, which is to large degree influenced by the number of nearest neighbors and distance between the particles.


2019 ◽  
Author(s):  
Danijela Gregurec ◽  
Alexander W. Senko ◽  
Andrey Chuvilin ◽  
Pooja Reddy ◽  
Ashwin Sankararaman ◽  
...  

In this work, we demonstrate the application of anisotropic magnetite nanodiscs (MNDs) as transducers of torque to mechanosensory cells under weak, slowly varying magnetic fields (MFs). These MNDs possess a ground state vortex configuration of magnetic spins which affords greater colloidal stability due to eliminated dipole-dipole interactions characteristic of isotropic magnetic particles of similar size. We first predict vortex magnetization using micromagnetic stimulations in sub-micron anisotropic magnetite particles and then use electron holography to experimentally investigate the magnetization of MNDs 98–226 nm in diameter. When MNDs are coupled to MFs, they transition between vortex and in-plane magnetization allowing for the exertion of the torque on the pN scale, which is sufficient to activate mechanosensitive ion channels in cell membranes.<br>


2019 ◽  
Author(s):  
Danijela Gregurec ◽  
Alexander W. Senko ◽  
Andrey Chuvilin ◽  
Pooja Reddy ◽  
Ashwin Sankararaman ◽  
...  

In this work, we demonstrate the application of anisotropic magnetite nanodiscs (MNDs) as transducers of torque to mechanosensory cells under weak, slowly varying magnetic fields (MFs). These MNDs possess a ground state vortex configuration of magnetic spins which affords greater colloidal stability due to eliminated dipole-dipole interactions characteristic of isotropic magnetic particles of similar size. We first predict vortex magnetization using micromagnetic stimulations in sub-micron anisotropic magnetite particles and then use electron holography to experimentally investigate the magnetization of MNDs 98–226 nm in diameter. When MNDs are coupled to MFs, they transition between vortex and in-plane magnetization allowing for the exertion of the torque on the pN scale, which is sufficient to activate mechanosensitive ion channels in cell membranes.<br>


1966 ◽  
Vol 44 (12) ◽  
pp. 1677-1682 ◽  
Author(s):  
William W. Thomson ◽  
W. M. Dugger Jr. ◽  
R. L. Palmer

The effects of ozone on the fine structure of palisade parenchyma cells were of two phases. The first phase involved changes in the chloroplast stroma which consisted of either a granulation and an increase in electron density or a formation of ordered arrays of granules and fibrils. In the second phase, there was a general disruption of the cellular membranes and organelles and the cellular contents aggregated in the center of the cells. The characteristic components of this aggregate were remains of the chloroplast membrane system and numerous ordered arrays of granules and fibrils. These changes were identical with those previously observed in cells damaged by peroxyacetyl nitrate and were probably related to the oxidation properties of both molecules. In some cells there was a disruption of the organization of the grana within the chloroplasts.


2019 ◽  
Author(s):  
Danijela Gregurec ◽  
Alexander W. Senko ◽  
Andrey Chuvilin ◽  
Pooja Reddy ◽  
Ashwin Sankararaman ◽  
...  

In this work, we demonstrate the application of anisotropic magnetite nanodiscs (MNDs) as transducers of torque to mechanosensory cells under weak, slowly varying magnetic fields (MFs). These MNDs possess a ground state vortex configuration of magnetic spins which affords greater colloidal stability due to eliminated dipole-dipole interactions characteristic of isotropic magnetic particles of similar size. We first predict vortex magnetization using micromagnetic stimulations in sub-micron anisotropic magnetite particles and then use electron holography to experimentally investigate the magnetization of MNDs 98–226 nm in diameter. When MNDs are coupled to MFs, they transition between vortex and in-plane magnetization allowing for the exertion of the torque on the pN scale, which is sufficient to activate mechanosensitive ion channels in cell membranes.<br>


Author(s):  
W. H. Zucker ◽  
R. G. Mason

Platelet adhesion initiates platelet aggregation and is an important component of the hemostatic process. Since the development of a new form of collagen as a topical hemostatic agent is of both basic and clinical interest, an ultrastructural and hematologic study of the interaction of platelets with the microcrystalline collagen preparation was undertaken.In this study, whole blood anticoagulated with EDTA was used in order to inhibit aggregation and permit study of platelet adhesion to collagen as an isolated event. The microcrystalline collagen was prepared from bovine dermal corium; milling was with sharp blades. The preparation consists of partial hydrochloric acid amine collagen salts and retains much of the fibrillar morphology of native collagen.


Author(s):  
E. Horvath ◽  
K. Kovacs ◽  
G. Penz ◽  
C. Ezrin

Follicular structures, in the rat pituitary, composed of cells joined by junctional complexes and possessing few organelles and few, if any, secretory granules, were first described by Farquhar in 1957. Cells of the same description have since been observed in several species including man. The importance of these cells, however, remains obscure. While studying human pituitary glands, we have observed wide variations in the fine structure of follicular cells which may lead to a better understanding of their morphogenesis and significance.


Author(s):  
E. N. Albert

Silver tetraphenylporphine sulfonate (Ag-TPPS) was synthesized in this laboratory and used as an electron dense stain for elastic tissue (Fig 1). The procedures for the synthesis of tetraphenylporphine sulfonate and the staining method for mature elastic tissue have been described previously.The fine structure of developing elastic tissue was observed in fetal and new born rat aorta using tetraphenylporphine sulfonate, phosphotungstic acid, uranyl acetate and lead citrate. The newly forming elastica consisted of two morphologically distinct components. These were a central amorphous and a peripheral fibrous. The ratio of the central amorphous and the peripheral fibrillar portion changed in favor of the former with increasing age.It was also observed that the staining properties of the two components were entirely different. The peripheral fibrous component stained with uranyl acetate and/or lead citrate while the central amorphous portion demonstrated no affinity for these stains. On the other hand, the central amorphous portion of developing elastic fibers stained vigorously with silver tetraphenylporphine sulfonate, while the fibrillar part did not (compare figs 2, 3, 4). Based upon the above observations it is proposed that developing elastica consists of two components that are morphologically and chemically different.


Sign in / Sign up

Export Citation Format

Share Document