Simulation of Canopy Cover, Soil Water Content and Yield Using FAO-AquaCrop Model under Deficit Irrigation Strategies

2020 ◽  
Vol 46 (3) ◽  
pp. 279-288
Author(s):  
Mohmed A. M. Abdalhi ◽  
Zhonghua Jia ◽  
Wan Luo ◽  
Osama O. Ali ◽  
Cheng Chen
2020 ◽  
Author(s):  
Wang Zhang ◽  
Chunmiao Zheng

<p>Plastic mulching is an effective field practice to improve crop water productivity (WP), especially widely used in arid and semi-arid areas. The positive effects of soil mulching on crop yield and WP have been studied through numerous field experiments and simulations at the site scale. However, few studies have focused on the mulching effects at the regional scale. Zhangye oasis, a typical arid region in the middle Heihe River Basin, was chosen as the study area. Global sensitivity analysis was applied to determine the most sensitive parameters in AquaCrop model. Based on the results of global sensitivity analysis, soil and crop parameters of AquaCrop model were calibrated and validated using field observations from three stations. The normalized root mean square error (NRMSE) values for soil water content, seed maize canopy cover, aboveground biomass, yield, spring wheat canopy cover, aboveground biomass and yield were 18.7%, 6.7%, 23.5%, 12.5%, 10.7%, 24.2% and 15.0% during the calibration period, and the corresponding values during the validation period were 25.1%, 7.0%, 22.2%, 17.7%, 9.1%, 23.6% and 11.7%, respectively. These values indicated the calibrated model performed well to simulate the soil water content and crop growth. Compared with no-mulching, the average soil water content during the growth period, seed maize yield and WP under mulching had been increased by 8.8%, 3.0% and 3.0%, respectively. The results demonstrated that plastic mulching could effectively improve the yield and WP of seed maize, which not significantly on spring wheat. This study offers a quantitatively analysis for plastic mulching applications at the regional scale.</p>


2016 ◽  
Vol 154 (6) ◽  
pp. 1026-1039 ◽  
Author(s):  
H. VAN GAELEN ◽  
N. DELBECQUE ◽  
B. ABRHA ◽  
A. TSEGAY ◽  
D. RAES

SUMMARYWeed infestation is a major yield-reducing factor that also decreases crop water productivity. Yet weeds are often neglected in crop productivity simulation studies, because existing empirical equations and mechanistic models are not widely applicable or have a high demand for input data and calibration. For that reason, AquaCrop, a widely applicable crop water productivity model, was expanded with a weed management module which requires only two easily obtainable input variables: (i) relative leaf cover of weeds, and (ii) weed-induced increase of total canopy cover. Using these inputs, AquaCrop directly simulates soil water content, crop canopy development and production as it is observed in weed-infested fields. Despite this simple approach, AquaCrop performed well to simulate soil water content in the root zone (relative root-mean-square error (RRMSE) of 5–13%), canopy cover (RRMSE of 15–22%), dry above-ground crop biomass during the season (RRMSE of 21–39%) and at maturity (RRMSE of 5–6%) and yield (RRMSE of 11–25%) of barley and wheat grown under different weed infestation levels and environments. The current study illustrates that the AquaCrop model can be used to assess the effect of weed infestation on crop growth and production, using a simple approach that is applicable to diverse environmental and agronomic conditions, even in data-scarce regions.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 425 ◽  
Author(s):  
Fairouz Slama ◽  
Nessrine Zemni ◽  
Fethi Bouksila ◽  
Roberto De Mascellis ◽  
Rachida Bouhlila

Water scarcity and quality degradation represent real threats to economic, social, and environmental development of arid and semi-arid regions. Drip irrigation associated to Deficit Irrigation (DI) has been investigated as a water saving technique. Yet its environmental impacts on soil and groundwater need to be gone into in depth especially when using brackish irrigation water. Soil water content and salinity were monitored in a fully drip irrigated potato plot with brackish water (4.45 dSm−1) in semi-arid Tunisia. The HYDRUS-1D model was used to investigate the effects of different irrigation regimes (deficit irrigation (T1R, 70% ETc), full irrigation (T2R, 100% ETc), and farmer’s schedule (T3R, 237% ETc) on root water uptake, root zone salinity, and solute return flows to groundwater. The simulated values of soil water content (θ) and electrical conductivity of soil solution (ECsw) were in good agreement with the observation values, as indicated by mean RMSE values (≤0.008 m3·m−3, and ≤0.28 dSm−1 for soil water content and ECsw respectively). The results of the different simulation treatments showed that relative yield accounted for 54%, 70%, and 85.5% of the potential maximal value when both water and solute stress were considered for deficit, full. and farmer’s irrigation, respectively. Root zone salinity was the lowest and root water uptake was the same with and without solute stress for the treatment corresponding to the farmer’s irrigation schedule (273% ETc). Solute return flows reaching the groundwater were the highest for T3R after two subsequent rainfall seasons. Beyond the water efficiency of DI with brackish water, long term studies need to focus on its impact on soil and groundwater salinization risks under changing climate conditions.


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 151 ◽  
Author(s):  
Grace Ray ◽  
Carlos G. Ochoa ◽  
Tim Deboodt ◽  
Ricardo Mata-Gonzalez

The effects of western juniper (Juniperus occidentalis) control on understory vegetation and soil water content were studied at the watershed-scale. Seasonal differences in topsoil (12 cm) water content, as affected by vegetation structure and soil texture, were evaluated in a 96-ha untreated watershed and in a 116-ha watershed where 90% juniper was removed in 2005. A watershed-scale characterization of vegetation canopy cover and soil texture was completed to determine some of the potential driving factors influencing topsoil water content fluctuations throughout dry and wet seasons for approximately one year (2014–2015). We found greater perennial grass, annual grass, and shrub cover in the treated watershed. Forb cover was no different between watersheds, and as expected, tree canopy cover was greater in the untreated watershed. Results also show that on average, topsoil water content was 1% to 3% greater in the treated watershed. The exception was during one of the wettest months (March) evaluated, when soil water content in the untreated watershed exceeded that of the treated by <2%. It was noted that soil water content levels that accumulated in areas near valley bottoms and streams were greater in the treated watershed than in the untreated toward the end of the study in late spring. This is consistent with results obtained from a more recent study where we documented an increase in subsurface flow residence time in the treated watershed. Overall, even though average soil water content differences between watersheds were not starkly different, the fact that more herbaceous vegetation and shrub cover were found in the treated watershed led us to conclude that the long-term effects of juniper removal on soil water content redistribution throughout the landscape may be beneficial towards restoring important ecohydrologic connections in these semiarid ecosystems of central Oregon.


2020 ◽  
Vol 12 (22) ◽  
pp. 9451
Author(s):  
Xiaowen Wang ◽  
Huanjie Cai ◽  
Liang Li ◽  
Xiaoyun Wang

Deficit irrigation strategy is essential for sustainable agricultural development in arid regions. A two−year deficit irrigation field experiment was conducted to study the water dynamics of winter wheat under deficit irrigation in Guanzhong Plain in Northwest China. Three irrigation levels were implemented during four growth stages of winter wheat: 100%, 80% and 60% of actual evapotranspiration (ET) measured by the lysimeter with sufficient irrigation treatment (CK). The agro−hydrological model soil−water−atmosphere−plant (SWAP) was used to simulate the components of the farmland water budget. Sensitivity analysis for parameters of SWAP indicated that the saturated water content and water content shape factor n were more sensitive than the other parameters. The verification results showed that the SWAP model accurately simulated soil water content (average relative error (MRE) < 21.66%, root mean square error (RMSE) < 0.07 cm3 cm−3) and ET (R2 = 0.975, p < 0.01). Irrigation had an important impact on actual plant transpiration, but the actual soil evaporation had little change among different treatments. The average deep percolation was 14.54 mm and positively correlated with the total irrigation amount. The model established using path analysis and regression methods for estimating ET performed well (R2 = 0.727, p < 0.01). This study provided effective guidance for SWAP model parameter calibration and a convenient way to accurately estimate ET with fewer variables.


1994 ◽  
Vol 119 (3) ◽  
pp. 383-388 ◽  
Author(s):  
Horst W. Caspari ◽  
M. Hossein Behboudian ◽  
David J. Chalmers

Five-year old `Hosui' Asian pear (Pyrus serotina Rehder) trees growing in drainage lysimeters and trained onto a Tatura trellis were subjected to three different irrigation regimes. Weekly water use (WU) was calculated using the mass-balance approach. Soil-water content of control lysimeters was kept at pot capacity, while deficit irrigation was applied before [regulated deficit irrigation (RDI)] and during the period of rapid fruit growth [late deficit irrigation (LDI)]. Soil-water content was maintained at ≈50% and 75% of pot capacity for RDI and LDI, respectively. Deficit irrigation reduced mean WU during RDI and LDI by 20%. The reduced WU was caused by lower stomatal conductance (gs) on deficit-irrigated trees. RDI trees had more-negative diurnal leaf water potentials (ψl). The ψl, gs, and WU remained lower for 2 weeks after RDI was discontinued. RDI reduced shoot extension and summer pruning weights, whereas winter pruning weights were not different between treatments. Except for the final week of RDI, fruit growth was not reduced, and fruit from RDI grew faster than the control during the first week after RDI. In contrast, fruit volume measurements showed that fruit growth was clearly inhibited by LDI. Final fruit size and yield, however, were not different between treatments. Return bloom was reduced by RDI but was not affected by LDI.


2012 ◽  
Vol 212-213 ◽  
pp. 3-9
Author(s):  
Qi Rui Wang ◽  
Jun Gao

Measured the cover soil water content in soil layer 0~30cm of different agroforestry landscape types in Jinghe river with TDR, the landscape types including sloping cropland, apple orchard, apple-clover system, land under forest and grass changed from grain crop and black locust forest. Analyze the distribution characteristic and spatiotemporal variability of the cover soil water. The result showed that the soil water has renewed in a certain extent after a rain period in 1.5 m soil profile; the soil water content is gradually increased from the top of to the bottom of the slope under the affection of the slope location and plant category. The theory model of semivariogram for cover soil water content before rain season and after season, the value of nugget is changed no obviously , and they are 0.25 and 0.30; ranges is 99.7 m and 87.6 m. And the results indicated that soil moisture exhibited high fractal dimensions and clear spatial autocorrelation. The fractal dimensions are 1.71 and 1.74, variogram is main autocorrelation. During rain season the theory semivariogram model is linear, the spatiotemporal variability of soil water content becomes higher with the increase in distance, and its fractal dimension is 1.40.


HortScience ◽  
2007 ◽  
Vol 42 (3) ◽  
pp. 688-691 ◽  
Author(s):  
Jinmin Fu ◽  
Jack Fry ◽  
Bingru Huang

Deficit irrigation is increasingly used to conserve water, but its impact on turfgrass rooting has not been well documented. The objective of this study was to examine the effects of deficit irrigation on ‘Falcon II’ tall fescue (Festuca arundinacea Schreb.) root characteristics in the field using a minirhizotron imaging system. The experiment was conducted on a silt loam soil from the first week of June to mid-Sept. 2001 and 2002 using a mobile rainout shelter under which turf received applications of 20%, 60%, or 100% of actual evapotranspiration (ET) twice weekly. Neither soil water content (0 to 25 cm) nor tall fescue rooting between 4.1- and 50.1-cm depths was affected by irrigation at 60% compared with 100% ET. Despite consistently lower soil water content, tall fescue irrigated at 20% ET exhibited an increase in root parameters beginning in July or August. Tall fescue subjected to 20% ET irrigation had greater total root length and surface area on two of five monitoring dates in 2002 compared with that receiving 100% ET. Evaluation of tall fescue rooting by depth indicated that root proliferation at 20% ET was occurring between 8.7- and 36.3-cm depths. As evaluated under the conditions of this experiment, turfgrass managers using deficit irrigation as a water conservation strategy on tall fescue should not be concerned about a reduction in rooting deep in the soil profile, and irrigation at 20% ET may result in root growth enhancement.


Sign in / Sign up

Export Citation Format

Share Document