Validation of Results of Atmospheric Temperature and Humidity Sounding with a Fourier Infrared Spectrometer onboard the Meteor-M No. 2 Satellite

2019 ◽  
Vol 44 (3) ◽  
pp. 216-221
Author(s):  
A. A. Filei ◽  
A. N. Davidenko ◽  
Yu. V. Kiseleva ◽  
D. A. Kozlov ◽  
E. I. Kholodov
2020 ◽  
Vol 10 (2) ◽  
pp. 5576-5580
Author(s):  
S. Javed ◽  
S. Ghazala ◽  
U. Faseeha

Heat stroke is considered a major problem in Karachi, with a considerable number of people recorded as victims each year. The proposed Internet-of-Things (IoT) based heat stroke shield works under heat stroke conditions, depending on a heat index value (atmospheric temperature and humidity). The system comprises of a wristband, a hardware kit and an alert system which can pre-notify a wearer regarding his body parameter readings. Moreover, the system can also work as a problem solver, in heat stroke condition, by showering water on the victim. In both cases, an alert will also be generated to the wearer’s caretakers with his GPS location.


2021 ◽  
Vol 13 (15) ◽  
pp. 2968
Author(s):  
Lianfa Lei ◽  
Zhenhui Wang ◽  
Yingying Ma ◽  
Lei Zhu ◽  
Jiang Qin ◽  
...  

Ground-based multichannel microwave radiometers (GMRs) can observe the atmospheric microwave radiation brightness temperature at K-bands and V-bands and provide atmospheric temperature and humidity profiles with a relatively high temporal resolution. Currently, microwave radiometers are operated in many countries to observe the atmospheric temperature and humidity profiles. However, a theoretical analysis showed that a radiometer can be used to observe solar radiation. In this work, we improved the control algorithm and software of the antenna servo control system of the GMR so that it could track and observe the sun and we use this upgraded GMR to observe solar microwave radiation. During the observation, the GMR accurately tracked the sun and responded to the variation in solar radiation. Furthermore, we studied the feasibility for application of the GMR to measure the absolute brightness temperature (TB) of the sun. The results from the solar observation data at 22.235, 26.235, and 30.000 GHz showed that the GMR could accurately measure the TB of the sun. The derived solar TB measurements were 9950 ± 334, 10,351 ± 370, and 9217 ± 375 K at three frequencies. In a comparison with previous studies, we obtained average percentage deviations of 9.1%, 5.3%, and 4.5% at 22.235, 26.235, and 30.0 GHz, respectively. The results demonstrated that the TB of the sun retrieved from the GMR agreed well with the previous results in the literature. In addition, we also found that the GMR responded to the variation in sunspots and a positive relationship existed between the solar TB and the sunspot number. According to these results, it was demonstrated that the solar observation technique can broaden the field usage of GMR.


Scientifica ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Christian Ogaugwu ◽  
Hammed Mogaji ◽  
Euphemia Ogaugwu ◽  
Uchechukwu Nebo ◽  
Hilary Okoh ◽  
...  

The novel coronavirus disease 2019 (COVID-19) has become a global pandemic with more than 4 million confirmed cases and over 280,000 confirmed deaths worldwide. Evidence exists on the influence of temperature and humidity on the transmission of related infectious respiratory diseases, such as influenza and severe acute respiratory syndrome (SARS). This study therefore explored the effects of daily temperature and humidity on COVID-19 transmission and mortality in Lagos state, the epicenter of COVID-19 in Nigeria. Correlation analysis was performed using incidence data on COVID-19 and meteorological data for the corresponding periods from 9th March to 12th May, 2020. Our results showed that atmospheric temperature has a significant weak negative correlation with COVID-19 transmission in Lagos. Also, a significant weak negative correlation was found to exist between temperature and cumulative mortality. The strength of the relationship between temperature and the disease incidence increased when 1 week and 2 weeks’ predetection delays were put into consideration. However, no significant association was found between atmospheric humidity and COVID-19 transmission or mortality in Lagos. This study contributes more knowledge on COVID-19 and will benefit efforts and decision-making geared towards its control.


2021 ◽  
Author(s):  
Lisa Jach ◽  
Thomas Schwitalla ◽  
Kirsten Warrach-Sagi ◽  
Volker Wulfmeyer

<p>The state of the land surface can have a crucial influence on the triggering of convection. Investigations of the land-atmosphere coupling strength on the regional scale are still rare, and have been mainly performed using global climate models with coarse resolutions. Increasing the horizontal resolution and the concomitant improved representation of the land surface are expected to refine the representation of feedbacks. A strong limiting factor, especially for process-based studies of the link between surface moisture availability, land cover properties, and convection triggering, is the availability of data with sufficient vertical resolution and temporal coverage. A convenient metric to investigate this link is the ‘Convection Triggering Potential’-‘Low-Level Humidity Index’ framework, which is applied in this study. This process-based coupling metric examines the boundary layer structure based on temperature and humidity profiles to draw conclusions on the potential strength of interactions. However, increasing the resolution of a simulation usually aggravates the amount of storage capacity needed, and in practice the number of vertical levels written out is often decreased to a handful over the total column. Consequently, a comprehensive regional model intercomparison targeting land-convection coupling strength is challenging.</p><p>In this study, a perturbation approach was applied as an attempt to overcome this limitation. Differences in the choice and configuration of models cause a spread in mean and variance of atmospheric temperature and humidity between models that in turn may impact the outcome of the framework. Perturbation factors of different magnitudes were added to modify summer atmospheric temperature and humidity from a WRF simulation over the entire column on a daily basis. The simulation covered the period 1986-2015 over the EURO-CORDEX domain. The perturbations were chosen to approximate a potential model spread to some extent. Sensitivity in the coupling strength was assessed in relation to the unperturbed case by applying the framework to a range of perturbation cases with differently strong combinations of temperature and humidity changes.</p><p>We will present results 1) of how warmer, cooler, dryer or moister conditions in the atmosphere changed the frequency of summer days with high feedback potential, 2) how the different conditions influenced the occurrence of positive relative to negative feedbacks, and 3) of spatial differences in the sensitivity of the coupling strength to temperature or humidity modifications, respectively, over Europe.</p>


Sign in / Sign up

Export Citation Format

Share Document