scholarly journals High Speed Data Exchange Algorithm in Telemedicine with Wavelet based on 4D Medical Image Compression

Author(s):  
Samreen Fatima

Existing Medical imaging techniques such as fMRI, positron emission tomography (PET), dynamic 3D ultrasound and dynamic computerized tomography yield large amounts of four-dimensional sets. 4D medical data sets are the series of volumetric images netted in time, large in size and demand a great of assets for storage and transmission. Here, in this paper, we present a method wherein 3D image is taken and Discrete Wavelet Transform(DWT) and Dual-Tree Complex Wavelet Transform(DTCWT) techniques are applied separately on it and the image is split into sub-bands. The encoding and decoding are done using 3D-SPIHT, at different bit per pixels(bpp). The reconstructed image is synthesized using Inverse DWT technique. The quality of the compressed image has been evaluated using some factors such as Mean Square Error(MSE) and Peak-Signal to Noise Ratio (PSNR).

Author(s):  
Dodi Zulherman ◽  
Jans Hendry ◽  
Ipam Fuadina Adam

Monitoring of Fetal Heart Rate (FHR) in the pregnancy period commonly uses the Doppler-based instruments despite having several disadvantages, such as high-cost and complexity of the monitoring system. Implementation of the passive and non-invasive method based on fetal phonocardiogram (fPCG), the acoustic recording of fetus cardiac signal, can be used as a potentially economical long-term monitoring device for diagnosis. Because the interference signal from the maternal women exists, the matured denoising technique was needed to implement the fPCG method to diagnose the fetus' well-being condition. The denoising system based on Dual-tree Complex Wavelet Transforms (DTCWT) was proposed in this paper. The proposed method was evaluated using Signal to Noise Ratio (SNR). Based on the experiment result from 37 fPCG signals from physio.net, the DTCWT system performance was compared with the Discrete Wavelet Transform (DWT). There were 24 CWT’s denoised fPCG signals that have successfully outperformed DWT’s SNR. DTCWT has also reduced the noises in the range of 30 Hz–80 Hz. Also, it emphasized the existence of dominant frequencies in the range of 60 Hz–65 Hz.


This paper aims in presenting a thorough comparison of performance and usefulness of multi-resolution based de-noising technique. Multi-resolution based image denoising techniques overcome the limitation of Fourier, spatial, as well as, purely frequency based techniques, as it provides the information of 2-Dimensional (2-D) signal at different levels and scales, which is desirable for image de-noising. The multiresolution based de-noising techniques, namely, Contourlet Transform (CT), Non Sub-sampled Contourlet Transform (NSCT), Stationary Wavelet Transform (SWT) and Discrete Wavelet Transform (DWT), have been selected for the de-noising of camera images. Further, the performance of different denosing techniques have been compared in terms of different noise variances, thresholding techniques and by using well defined metrics, such as Peak Signal-to-Noise Ratio (PSNR) and Root Mean Square Error (RMSE). Analysis of result shows that shift-invariant NSCT technique outperforms the CT, SWT and DWT based de-noising techniques in terms of qualititaive and quantitative objective evaluation


The research constitutes a distinctive technique of steganography of image. The procedure used for the study is Fractional Random Wavelet Transform (FRWT). The contrast between wavelet transform and the aforementioned FRWT is that it comprises of all the benefits and features of the wavelet transform but with additional highlights like randomness and partial fractional value put up into it. As a consequence of the fractional value and the randomness, the algorithm will give power and a rise in the surveillance layers for steganography. The stegano image will be acquired after administrating the algorithm which contains not only the coated image but also the concealed image. Despite the overlapping of two images, any diminution in the grade of the image is not perceived. Through this steganographic process, we endeavor for expansion in surveillance and magnitude as well. After running the algorithm, various variables like Mean Square Error (MSE) and Peak Signal to Noise ratio (PSNR) are deliberated. Through the intended algorithm, a rise in the power and imperceptibility is perceived and it can also support diverse modification such as scaling, translation and rotation with algorithms which previously prevailed. The irrefutable outcome demonstrated that the algorithm which is being suggested is indeed efficacious.


Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. V179-V190 ◽  
Author(s):  
Zhou Yu ◽  
Ray Abma ◽  
John Etgen ◽  
Claire Sullivan

High-resolution seismic imaging requires noise attenuation to achieve signal-to-noise ratio (S/N) improvements without compromising data bandwidth. Amplitude versus offset analysis requires good amplitude fidelity in premigration processes. Any nonreflected wavefield energy in the data will degrade the seismic image quality. Despite significant progress over the years, preserving low-frequency signals without compromising the S/N and avoiding the smearing of aliased signal are still a challenge for conventional methods. This problem is compounded when additional interference noise is added with simultaneous source acquisition. Because noise characteristics vary from shot to shot and receiver to receiver, we need a method that is robust and effective. In addition, we also want the method to be efficient and easy to use from a practical perspective. We have recently developed an approach using a wavelet transform to deterministically separate the primary signal from the noise, including simultaneous source interference. The goals are (1) improving the S/N without compromising bandwidth, (2) preserving the low-frequency and near-offset primaries without compromising the S/N, and (3) preserving the local primary wavefield while attenuating noise. For distance-separated simultaneous source acquisition, the goal is preserving long-offset primaries while removing interference. This wavelet denoising flow consists of a linear transformation and filtering using the complex wavelet transform (CWT). For reflection signals, normal moveout (NMO) is used. NMO transforms the low-velocity surface waves and the interference noise to where it is easily identified and rejected with a dip filter in the multidimensional CWT domain. Land field data examples have demonstrated significantly improved S/Ns and low-frequency signal preservation in migrated images after wavelet denoising. Since the numerical implementation of the CWT is as fast as a fast Fourier transform, this flow is able to suppress noise and interference simultaneously on the 3D land data much faster than the other inversion methods.


Author(s):  
Shabana Urooj ◽  
Satya P. Singh

The aim of this chapter is to highlight the biomedical applications of wavelet transform based soft computational techniques i.e. wavenet and corresponding research efforts in imaging techniques. A brief introduction of wavelet transform, its properties that are vital for biomedical applications touched by various researchers and basics of neural networks has been discussed. The concept of wavelon and wavenet is also discussed in detail. Recent survey of wavelet based neural networks in medical imaging is another facet of this script, which includes biomedical image denoising, image enhancement and functional neuro-imaging, including positron emission tomography and functional MRI.


Author(s):  
Sajjan Singh

Orthogonal frequency division multiplexing (OFDM) is an efficient method of data transmission for high speed communication systems over multipath fading channels. However, the peak-to-average power ratio (PAPR) is a major drawback of multicarrier transmission systems such as OFDM is the high sensitivity of frequency offset. The bit error rate analysis (BER) of discrete wavelet transform (DWT)-OFDM system is compared with conventional fast Fourier transform (FFT)-OFDMA system in order to ensure that wavelet transform based OFDMA transmission gives better improvement to combat ICI than FFT-based OFDMA transmission and hence improvement in BER. Wavelet transform is applied together with OFDM technology in order to improve performance enhancement. In the proposed system, a Kalman filter has been used in order to improve BER by minimizing the effect of ICI and noise. The obtained results from the proposed system simulation showed acceptable BER performance at standard SNR.


Author(s):  
Sugandha Agarwal ◽  
O. P. Singh ◽  
Deepak Nagaria ◽  
Anil Kumar Tiwari ◽  
Shikha Singh

The concept of Multi-Scale Transform (MST) based image de-noising methods is incorporated in this paper. The shortcomings of Fourier transform based methods have been improved using multi-scale transform, which help in providing the local information of non-stationary image at different scales which is indispensable for de-noising. Multi-scale transform based image de-noising methods comprises of Discrete Wavelet Transform (DWT), and Stationary Wavelet Transform (SWT). Both DWT and SWT techniques are incorporated for the de-noising of standard images. Further, the performance comparison has been noted by using well defined metrics, such as, Root Mean Square Error (RMSE), Peak Signal-to-Noise Ratio (PSNR) and Computation Time (CT). The result shows that SWT technique gives better performance as compared to DWT based de-noising technique in terms of both analytical and visual evaluation.


Sign in / Sign up

Export Citation Format

Share Document