scholarly journals More precise definition of geological model and petroleum potential according to 3D CDP seismic data: Ludlovsky license Area in the Barents Sea waters

Author(s):  
V.N. Borodkin ◽  
◽  
А.R. Kurchikov ◽  
А.S. Nedosekin ◽  
А.V. Lukashov ◽  
...  
Author(s):  
Evgeny Karulin ◽  
Marina Karulina ◽  
Mikhail Kazantsev ◽  
Aleksander Proniashkin ◽  
Dmitry Zaikin

Ice management (IM) is often required to support offshore production of oil and gas in freezing seas. It helps to mitigate ice impact on marine structures and thus minimize risks of accidents as well as to increase weather windows for marine operations. One of the IM tactics is to use an icebreaker for producing a zone of managed ice for ensuring safe and efficient operation of marine facilities: platforms, offloading terminals, tankers, etc. The choice of the right icebreaker which is best capable to cope with the IM jobs is quite a challenging task. This paper suggests an approach to objectively compare operational efficiency of different icebreakers in performance of some typical IM tasks. This approach made it possible to work out universal criteria for assessing the efficiency of these ships. The criteria of icebreaker efficiency and operational performance have been derived from actual ice breaking and maneuvering data including safety aspects of required icebreaker maneuvers. The paper contains case studies with estimation of the said criteria for a number of IM icebreakers expected to be used for ice management in the south-eastern part of the Barents Sea.


Geology ◽  
2004 ◽  
Vol 32 (8) ◽  
pp. 729 ◽  
Author(s):  
Karin Andreassen ◽  
Lena Charlotte Nilssen ◽  
Bjarne Rafaelsen ◽  
Luppo Kuilman

2007 ◽  
Vol 4 (6) ◽  
pp. 897-931
Author(s):  
R. C. Levine ◽  
D. J. Webb

Abstract. Following meteorological practice the definition of available potential energy in the ocean is conventionally defined in terms of the properties of the global ocean. However there is also a requirement for a localised definition, for example the energy released when shelf water cascades down a continental shelf in the Arctic and enters a boundary current. In this note we start from first principals to obtain an exact expression for the available energy (AE) in such a situation. We show that the available energy depends on enstrophy and gravity. We also show that it is exactly equal to the work done by the pressure gradient and by buoyancy. The results are used to investigate the distribution of AE in the Barents Sea and surrounding regions relative to the interior of the Arctic Ocean. We find that water entering the Barents Sea from the Atlantic already has a high AE, that it is increased by cooling but that much of the increase is lost overcoming turbulence during the passage through the region to the Arctic Ocean. However on entering the Arctic enough available energy remains to drive a significant current around the margin of the ocean. The core of raised available energy also acts as a tracer which can be followed along the continental slope beyond the dateline.


Georesursy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 63-79
Author(s):  
Alina V. Mordasova ◽  
Antonina V. Stoupakova ◽  
Anna A. Suslova ◽  
Daria K. Ershova ◽  
Svetlana A. Sidorenko

Unique Leningradsky and Rusanovsky gascondensate fields in the Barrem-Cenomanian layer are discovered in the Kara Sea. Non-industrial accumulations of oil and gas have been discovered in the Lower Cretaceous sediments of the western part of the Barents Sea shelf. However, the structure and oil and gas potential of the Lower Cretaceous sediments of the Barents-Kara shelf remain unexplored. Based on the seismic-stratigraphic and cyclostratigraphic analysis, a regional geological model of the Lower Cretaceous deposits of the Barents-Kara shelf was created, the distribution area and the main stages of the accumulation of clinoforms were identified. As a result of a detailed analysis of the morphology of clinoform bodies, paleogeographic conditions were restored in the Early Cretaceous and a forecast of the distribution of sandy reservoirs was given


GeoArabia ◽  
1999 ◽  
Vol 4 (3) ◽  
pp. 363-378
Author(s):  
Mohammed A. Badri ◽  
Taha M. Taha ◽  
Robert W. Wiley

ABSTRACT In 1995 oil was discovered in the pre-Miocene Matulla and Nubia Sandstones in the Ras El Ush field, Gulf of Suez, Egypt. The discovery was based on an aeromagnetic anomaly from a basement high. After drilling several delineation wells, based on a geological model, it became evident that the field is very complex as it is broken into tilted and rotated compartmental blocks by two perpendicular fault systems. Also the 2-D seismic data were of poor quality beneath the thick Miocene South Gharib Evaporite. Since part of the field lies below shallow-water, 3-D seismic was considered to be too costly. When a delineation well did not encounter the reservoir, due to an unanticipated fault, a 2-D walkaway Vertical Seismic Profile (VSP) was acquired. It clearly revealed the presence of a cross fault. The success of the 2-D VSP in imaging the fault led to the acquisition of the first Middle East 3-D VSP survey in the following well. A downhole, tri-axial, five geophone array tool was used to acquire the 3-D VSP. The 3-D volume of the final migrated VSP data provided the means for the reliable mapping of horizons beneath the South Gharib Evaporite. These maps improved the definition of the field and helped detect previously unrecognized prospective blocks. Four further successful delineation wells confirmed the 3-D VSP interpretation.


Geosciences ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 474 ◽  
Author(s):  
Ingrid F. Løtveit ◽  
Willy Fjeldskaar ◽  
Magnhild Sydnes

Many of the Earth’s sedimentary basins are affected by glaciations. Repeated glaciations over millions of years may have had a significant effect on the physical conditions in sedimentary basins and on basin structuring. This paper presents some of the major effects that ice sheets might have on sedimentary basins, and includes examples of quantifications of their significance. Among the most important effects are movements of the solid Earth caused by glacial loading and unloading, and the related flexural stresses. The driving factor of these movements is isostasy. Most of the production licenses on the Norwegian Continental Shelf are located inside the margin of the former Last Glacial Maximum (LGM) ice sheet. Isostatic modeling shows that sedimentary basins near the former ice margin can be tilted as much as 3 m/km which might significantly alter pathways of hydrocarbon migration. In an example from the SW Barents Sea we show that flexural stresses related to the isostatic uplift after LGM deglaciation can produce stress changes large enough to result in increased fracture-related permeability in the sedimentary basin, and lead to potential spillage of hydrocarbons out of potential reservoirs. The results demonstrate that future basin modeling should consider including the loading effect of glaciations when dealing with petroleum potential in former glaciated areas.


2020 ◽  
Author(s):  
Gaia Travan ◽  
Benjamin Bellwald ◽  
Sverre Planke ◽  
Virginie Gaullier ◽  
Dwarika Maharjan ◽  
...  

<p>The geology of the Barents Sea has been widely studied because of the interest for hydrocarbon exploration. Our study focuses on the SW Barents Sea, on the western side of the Senja Ridge in the Sørvestsnagets Basin, which is still a less deciphered area. Located at the limit of the continental shelf, this deep Cretaceous basin is characterized by a several-kilometer-thick sequence of Cenozoic sediments locally influenced by salt structures. Because of the peculiar rheological characteristics of salt, the deposition of evaporites during Permo-Carboniferous times still represents a key aspect to deeply understand the geological setting because salt tectonics considerably affects the brittle sedimentary cover.</p><p>5,500 km<sup>2</sup> of high-quality 3D seismic data, integrated with potential field data and existing wells, led to the interpretation of the main horizons and unconformities in the sedimentary sequence, with focus on the salt structures.</p><p>The top of the salt is characterized by a strong positive-amplitude reflection in the seismic data, and has been interpreted with a line spacing of 100 m. Subsequent gridding of the interpreted horizon to a bin size of 12.5 m highlights that the geomorphology for the top of the three salt structures is particularly complex, with presence of salt horns and development of minibasins above the salt. Integration of potential field data shows a strong correlation between salt structures and low values in Bouguer-Gravity anomalies. Different families of faults related to salt and to crustal tectonics have been mapped, and strong seismic anomalies related to faults above the salt structures are identified at multiple stratigraphic levels. Part of these faults have been active until 20 000 years ago, and are rarely active at present day.</p><p>The three salt structures interpreted on the western side of the Senja Ridge have a total extent of around 800 km<sup>2</sup> and are mainly the consequence of different pulses of reactive diapirism, due to several diachronous rifting events during the opening of the Barents Sea. After the opening of the Sørvestsnagets Basin, salt tectonics continued and was influenced by crustal movements and glacial sedimentation and erosion in this pull-apart basin setting.</p><p>The presence of the strong seismic anomalies above the salt structures is interpreted as gas accumulations, which makes this topic of particular interest for the future development of the oil and gas industry of the SW Barents Sea.</p>


Sign in / Sign up

Export Citation Format

Share Document