Comparison of Immunomodulative Effects of the Histamine-2 Receptor Antagonists Cimetidine, Ranitidine, and Famotidine on Peripheral Blood Mononuclear Cells in Gastric Cancer Patients

1995 ◽  
Vol 30 (3) ◽  
pp. 265-271 ◽  
Author(s):  
K. B. Hahm ◽  
W. H. Kim ◽  
S. I. Lee ◽  
J. K. Rang ◽  
I. S. Park
Life ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 189
Author(s):  
Wei-Ming Chen ◽  
Jing-Lan Liu ◽  
Huei-Chieh Chuang ◽  
Yong-Lin Chang ◽  
Chia-Ming Yeh ◽  
...  

Immunotherapy is a highly promising approach for the treatment of gastric cancer, the third-leading cause of overall cancer death worldwide. In particular, tumor-infiltrating lymphocytes and peripheral blood mononuclear cells are believed to mediate host immune responses, although this activity may vary depending on the activation status and/ or their microenvironments. Here, we examined the expression of a specific zinc finger transcription factor, Helios (IKZF2), in gastric tumor-infiltrating lymphocytes by immunohistochemistry and the correlation with survival. Segregation of gastric cancer patients into high- vs. low-Helios-expressing tumor-infiltrating lymphocytes showed those with high expression to exhibit longer survival in gastric cancer patients, Helicobacter pylori-infected gastric cancer patients and advanced stage (III–IV) gastric cancer patients. In particular, Helios expression was an independent factor for survival in advanced gastric cancer patients. We performed immunofluorescence staining to detect Helios expression in tumor-infiltrating lymphocytes and peripheral blood mononuclear cells. We found that Helios is expressed more in CD4+ T cells and little in CD8+ T cells in infiltrated lymphocytes in gastric cancer. In summary, we believe that the study of specific characteristics of tumor-infiltrating lymphocytes can delineate the interactions of immune and tumor cells to improve upon immunotherapy strategies.


Author(s):  
S. Schumann ◽  
U. Eberlein ◽  
C. Lapa ◽  
J. Müller ◽  
S. Serfling ◽  
...  

Abstract Purpose One therapy option for prostate cancer patients with bone metastases is the use of [223Ra]RaCl2. The α-emitter 223Ra creates DNA damage tracks along α-particle trajectories (α-tracks) in exposed cells that can be revealed by immunofluorescent staining of γ-H2AX+53BP1 DNA double-strand break markers. We investigated the time- and absorbed dose-dependency of the number of α-tracks in peripheral blood mononuclear cells (PBMCs) of patients undergoing their first therapy with [223Ra]RaCl2. Methods Multiple blood samples from nine prostate cancer patients were collected before and after administration of [223Ra]RaCl2, up to 4 weeks after treatment. γ-H2AX- and 53BP1-positive α-tracks were microscopically quantified in isolated and immuno-stained PBMCs. Results The absorbed doses to the blood were less than 6 mGy up to 4 h after administration and maximally 16 mGy in total. Up to 4 h after administration, the α-track frequency was significantly increased relative to baseline and correlated with the absorbed dose to the blood in the dose range < 3 mGy. In most of the late samples (24 h – 4 weeks after administration), the α-track frequency remained elevated. Conclusion The γ-H2AX+53BP1 assay is a potent method for detection of α-particle-induced DNA damages during treatment with or after accidental incorporation of radionuclides even at low absorbed doses. It may serve as a biomarker discriminating α- from β-emitters based on damage geometry.


Sign in / Sign up

Export Citation Format

Share Document