Encapsulation of plasmid DNA in PLGA-stearylamine microspheres: A comparison of solvent evaporation and spray-drying methods

2003 ◽  
Vol 20 (3) ◽  
pp. 387-399 ◽  
Author(s):  
K. N. Atuah ◽  
E. Walter ◽  
H. P. Merkle ◽  
H. O. Alpar
2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Wasim Akram ◽  
Navneet Garud

Abstract Background Chicory is one of the major source of inulin. In our study, Box–Behnken model/response surface analysis (RSM) was used for the optimization of spray drying process variables to get the maximum inulin yield from chicory (Cichorium intybus L.). For this investigation, the investigational plan utilized three process variables drying temperature (115–125 °C), creep speed (20–24 rpm), and pressure (0.02–0.04 MPa). Result The optimal variables established by applying the Box–Behnken model were as follows: drying temperature 119.20 °C, creep speed 21.64 rpm, and pressure 0.03 MPa. The obtained powdered inulin by spray drying was investigated for the yield value, identification, size, and surface morphology of the particle. The inulin obtained from the spray drying process consists of a fine molecule-sized white powder. Instead, the drying methods shows a significant effect on the morphology and internal configuration of the powdered inulin, as the inulin obtained from spray drying was of a widespread and uniform size and shape, with a rough surface on increase in temperature and smoother surface while increasing the creep speed. The findings indicate that the spray drying with optimum parameters resulted in maximum product yield. Conclusion The outcomes of the study concluded that the product yield through spray drying technique under optimized condition is optimal as compared to other drying technique. Hence, this technique may be applied at commercial scale for the production of inulin.


2018 ◽  
Vol 21 (1) ◽  
pp. 2339-2354 ◽  
Author(s):  
Bambang Nurhadi ◽  
Nandi Sukri ◽  
Wahyu Kristian Sugandi ◽  
Annisa Puteri Widanti ◽  
Resi Restiani ◽  
...  

Author(s):  
Ali Salem ◽  
Nahed Fakhfakh ◽  
Mourad Jridi ◽  
Ola Abdelhedi ◽  
Moncef Nasri ◽  
...  

2013 ◽  
Vol 687 ◽  
pp. 88-93
Author(s):  
Jian Xu ◽  
Zhong Jun Feng ◽  
Le Feng Fu ◽  
Bai Cun Zheng

Acrylate polymer emulsion was synthesized by semi-continuous seeded emulsion polymerization with methacrylic acid (MAA) as the hydrophilic shell monomer. The redispersible polymer powder was prepared by spray drying method. The effects of the amount of MAA, styrene (St) stoichiometry equivalents to methyl methacrylate, and two kinds of spray drying methods on size distribution of the redispersible polymer powder were further systematically investigated. The Malvern laser particle size analyzer, transition electron microscopy (TEM), scanning electron microscopy (SEM) and differential scanning calorimeter were employed to characterize the redispersible polymer powder. Results showed that the redispersible polymer powder obtained by pneumatic spray drying with excellent re-dispersibility could be synthesized at 10 % of MAA, 50 % of St stoichiometry equivalents. The final copolymer emulsion with “perfect” core-shell morphology was approved by TEM, and the comparable film forming ability of the redispersible polymer powder with the original emulsion was observed by SEM, which could form a dense and smooth membrane.


2021 ◽  
Vol 10 (3) ◽  
pp. 2929-2932
Author(s):  
Sachin N Kothawade

Spray drying methods were used to make solid dispersions of the medication Eprosartan Mesylate, which is poorly water-soluble. X-ray Powder diffraction, Fourier transform infrared spectroscopy, and differential scanning calorimetry were used to characterize the products' physicochemical features as well as drug-polymer interactions. Eprosartan Mesylate was shown to be dispersed amorphously in both solid dispersion systems, with a drug to polymer weight ratio of 1:4.The drug and polymer created hydrogen bonds, according to the spectrum data. Both techniques utilized in this investigation enhanced Eprosartan Mesylate solubility. Solid dispersions, on the other hand, performed significantly better, dissolving completely in 5 minutes and at a rate that was about 20 times faster than API within the first 15 minutes. Spray drying is a good way to boost the bioavailability of drugs that are poor water solubility.


Sign in / Sign up

Export Citation Format

Share Document