polymeric microparticles
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 47)

H-INDEX

27
(FIVE YEARS 4)

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3776
Author(s):  
Myrla Melo ◽  
André da Silva ◽  
Edson Silva Filho ◽  
Ronaldo Oliveira ◽  
Jarbas Silva Junior ◽  
...  

In ruminant feeding, mechanisms for controlling the rate of ammonia release in the rumen are important for increasing the efficiency of transforming dietary nitrogen into microbial protein. Three microencapsulated formulations, with increased urea concentrations of 10 (MPec1), 20 (MPec2) and 30% (MPec3) from the w/w, based on the mass of citrus pectin solution, employ the external ionic gelation/extrusion technique. The properties of microencapsulated urea were examined as a completely randomized design with 5 treatments each with 10 replicates for evaluation, and the ratios of dietary to free urea were compared using 5 fistulated male Santa Ines sheep in a Latin 5 × 5 square design. The degradation kinetics showed that the rate of controlled release from the microencapsulated systems was significantly reduced compared with that of free urea (p < 0.05). The population density of ruminal protozoa increased when sheep received the microencapsulated urea (p < 0.05). The disappearance of dry matter and crude protein reached a degradation plateau during the first minutes for the MPec1 and MPec2 systems and was slower for MPec3. The MPec1 and MPec2 systems presented higher (p < 0.05) blood serum concentrations of albumin, urea nitrogen (BUN), creatinine and total cholesterol and did not affect (p > 0.05) the other blood metabolites. The MPec2 systems are recommended because they consist of microspheres with more (p < 0.05) controlled core release, delaying the peak of urea released in the rumen and BUN without affecting (p < 0.05) ruminal pH and temperature. Microencapsulation with calcium pectinate provided better utilization of urea, reducing the risk of ruminant intoxication.


2021 ◽  
Vol 20 (3) ◽  
pp. 47-56
Author(s):  
A. M. Miroshkina ◽  
S. P. Krechetov ◽  
N. L. Solovieva ◽  
I. I. Krasnyuk

Introduction. Nowadays, the development of delivery systems based on micro- and nanoparticles is being actively pursued to increase the selectivity and efficiency of photosensitizers in photodynamic therapy. Such microparticles could increase the effectiveness of the already used chemotherapeutic drugs due to their accumulation in the tumor and help to overcome the drug resistance of tumor cells.The aim of this research was to obtain microparticles based on a biocompatible block copolymer of lactic and glycolic acids with the inclusion of the photosensitizer radachlorin, magnetic nanoparticles, and perfluorodecalin and their subsequent evaluation as therapeutic agents for photodynamic therapy.Materials and methods. Microparticles were obtained using the double emulsion method, described using of electron microscopy. Evaluation of their photodynamic properties was carried out using spectrophotometry and MTTtest on cell culture.Results. Spherical microparticles with a size of less than 1 μm were obtained. The release of the active substance from microparticles occurred gradually over two weeks, and in the case of the presence of magnetic nanoparticles, the concentration of radachlorin remained practically unchanged for a month. Exposure of microparticles to the light of LED is accompanied by the formation ofsinglet oxygen. Electron microscopy indicated intracellular position of microparticlesin tumor cells. The MTT test revealed a significant inhibition of cell viability in the presence of microparticles.Conclusion. The research results allow us to consider the obtained biocompatible polymer microparticles with the inclusion of radachlorin as a depot of radachlorin for local use in photodynamic therapy of tumors. 


2021 ◽  
Vol 8 ◽  
Author(s):  
Safa A. Damiati ◽  
Samar Damiati

Several attempts have been made to encapsulate indomethacin (IND), to control its sustained release and reduce its side effects. To develop a successful formulation, drug release from a polymeric matrix and subsequent biodegradation need to be achieved. In this study, we focus on combining microfluidic and artificial intelligence (AI) technologies, alongside using biomaterials, to generate drug-loaded polymeric microparticles (MPs). Our strategy is based on using Poly (D,L-lactide-co-glycolide) (PLGA) as a biodegradable polymer for the generation of a controlled drug delivery vehicle, with IND as an example of a poorly soluble drug, a 3D flow focusing microfluidic chip as a simple device synthesis particle, and machine learning using artificial neural networks (ANNs) as an in silico tool to generate and predict size-tunable PLGA MPs. The influence of different polymer concentrations and the flow rates of dispersed and continuous phases on PLGA droplet size prediction in a microfluidic platform were assessed. Subsequently, the developed ANN model was utilized as a quick guide to generate PLGA MPs at a desired size. After conditions optimization, IND-loaded PLGA MPs were produced, and showed larger droplet sizes than blank MPs. Further, the proposed microfluidic system is capable of producing monodisperse particles with a well-controllable shape and size. IND-loaded-PLGA MPs exhibited acceptable drug loading and encapsulation efficiency (7.79 and 62.35%, respectively) and showed sustained release, reaching approximately 80% within 9 days. Hence, combining modern technologies of machine learning and microfluidics with biomaterials can be applied to many pharmaceutical applications, as a quick, low cost, and reproducible strategy.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3045
Author(s):  
Tatiana S. Demina ◽  
Liubov A. Kilyashova ◽  
Tatiana N. Popyrina ◽  
Eugenia A. Svidchenko ◽  
Sankar Bhuniya ◽  
...  

Biodegradable polymeric microparticles are widely used in drug delivery systems with prolonged-release profiles and/or cell microcarriers. Their fabrication via the oil/water emulsion solvent evaporation technique has normally required emulsifiers in the aqueous phase. The present work aims to evaluate the effectiveness of various polysaccharides, such as chitosan, hyaluronic acid, cellulose, arabinogalactan, guar and their derivatives, as an alternative to synthetic surfactants for polylactide microparticle stabilization during their fabrication. Targeted modification of the biopolymer’s chemical structure was also tested as a tool to enhance polysaccharides’ emulsifying ability. The transformation of biomacromolecules into a form of nanoparticle via bottom-up or top-down methods and their subsequent application for microparticle fabrication via the Pickering emulsion solvent evaporation technique was useful as a one-step approach towards the preparation of core/shell microparticles. The effect of polysaccharides’ chemical structure and the form of their application on the polylactide microparticles’ total yield, size distribution and morphology was evaluated. The application of polysaccharides has great potential in terms of the development of green chemistry and the biocompatibility of the formed microparticles, which is especially important in biomedicine application.


2021 ◽  
Vol 11 (16) ◽  
pp. 7567
Author(s):  
Teresa Silvestri ◽  
Barbara Immirzi ◽  
Giovanni Dal Poggetto ◽  
Paola Di Donato ◽  
Valentina Mollo ◽  
...  

Polymeric microparticles (MPs) designed for the intravitreal administration of therapeutic proteins result in a prolonged half-life in the vitreous and can delay or discourage the onset of adverse effects inevitably related to this route of administration. Hence, here we designed MPs composed of a polymeric blend based on poly(lactic-co-glycolic) acid and poloxamers, externally decorated with hyaluronic acid. The MPs are intended for intravitreal administration of bovine serum albumin. In detail, a systematic formulative study aiming to shed light on the complex relationship between protein release rate and MP degradation rate was carried out by means of calorimetric and gel permeation chromatography analyses. We found out that poloxamer addition caused a compact MP matrix, which led to a slight modification of the degradation kinetics and a reduction in the initial BSA initial release, which is of the utmost importance to ensure a relatively regular BSA release. It must also be underlined that for acid-labile molecules such as proteins, the poloxamer’s presence induced complex and hardly predictable effects on MP degradation/protein release, due to the dynamic balance between the time-evolving hydrophilicity of MPs and the influence of poloxamers themselves on the PLGA degradation rate.


2021 ◽  
Vol 58 (2) ◽  
pp. 192-200
Author(s):  
Sergiu Alexandru Tofan ◽  
Cristian Olteanu ◽  
Camelia Szuhanek ◽  
ramona Amina Popovici ◽  
Magda Mihaela Luca ◽  
...  

A biomaterial must be biologically compatible, mechanical, functional, corrosion resistant and easily adapt to clinical and laboratory technologies. Dental biomaterials are materials used to replace a part of a living system or to work closely with living tissue. Many scientific articles present different polymeric biocomposites with possible application in dentistry and this is a proof of the opportunity of a research in a field in full ascent and with great availability in the promotion of materials destined to �work under biological constraint� and which must also meet the functional requirements of a dental implant. The objectives of this research were to obtain and to comparatively evaluate different polymeric microparticles that can be used in dentistry. The samples based on poly(lactic-co-glycolic acid) and respectively polyurethane microparticles were characterized by pH and Zetasizer measurements, and in vitro cytotoxicity assays. The results indicate the obtaining of particles with a neutral pH, medium homogeneity, and with different tendencies to form agglomerations. Their low cytotoxicity, tested on the primary human gingival fibroblasts by MTT and LDH techniques, indicates that these microparticles are safe to be tested in further clinical evaluations.


Polymer ◽  
2021 ◽  
pp. 124043
Author(s):  
Kun Jia ◽  
Yun Bai ◽  
Lei Wang ◽  
Yuanyuan Luo ◽  
Weibin Hu ◽  
...  

2021 ◽  
Vol 602 ◽  
pp. 120606
Author(s):  
Cinzia Pagano ◽  
Paola Calarco ◽  
Alessandro Di Michele ◽  
Maria Rachele Ceccarini ◽  
Tommaso Beccari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document