scholarly journals The role of rigid and hinged polypropylene ankle-foot-orthoses in the management of cerebral palsy: a case study

1988 ◽  
Vol 12 (3) ◽  
pp. 129-135 ◽  
Author(s):  
E. A. Middleton ◽  
G. R. B. Hurley ◽  
J. S. McIlwain

Ankle-foot orthoses are commonly used in the treatment of spastic cerebral palsy to hold the foot in a position conducive to a more functional gait. This study, utilizing quantitative biomechanical techniques, evaluates the effects of a rigid ankle-foot orthosis and a hinged ankle-foot orthosis on spastic cerebral palsy gait. The subject was a 4.5 year old female diagnosed as spastic diplegic cerebral palsied shortly after birth. Testing involved collection of kinematic coordinate data employing a WATSMART video system and ground reaction force' data using a Kistler force plate. Jensen's (1978) photogrammetric method was used to estimate body segment inertial parameters. The hinged ankle-foot orthosis was found to be more effective than the rigid ankle-foot orthosis. The subject exhibited a more natural ankle motion during the stance phase of gait, greater symmetry of segmental lower extremity motion, and decreased knee moments during stance while wearing a hinged ankle-foot orthosis.

2019 ◽  
Vol 43 (4) ◽  
pp. 453-458 ◽  
Author(s):  
Joshua Young ◽  
Sally Jackson

Background: Ankle-foot orthoses may be used in pre-ambulatory children with cerebral palsy; however, their effect on the acquisition of walking is unknown. This case report aims to evaluate the effect of an ankle-foot orthosis–footwear combination on the acquisition of walking in a single subject with cerebral palsy. Case Description and Methods: This study reports the orthotic management of a single child with spastic bilateral cerebral palsy over a 15-month period, during which time the ability to independently stand and walk was acquired. Custom rigid ankle-foot orthoses were prescribed. Gait speed and Edinburgh Visual Gait Score were assessed with and without the orthoses. Findings and Outcomes: The subject developed the ability to stand and walk using an ankle-foot orthosis–footwear combination with a walker frame, and to a limited extent without a walker frame. The subject remained unable to take independent steps unless wearing the ankle-foot orthosis–footwear combination. Clinically significant differences in gait speed and Edinburgh Visual Gait Score were observed. Conclusion: An ankle-foot orthosis–footwear combination may aid the development of independent walking in some children with cerebral palsy. Further research on the effects of orthoses on the acquisition of walking ability in children with cerebral palsy is needed. Clinical relevance Custom rigid ankle-foot orthoses combined with footwear may aid the development of independent standing and walking in some children with bilateral spastic cerebral palsy. This intervention may be considered in clinical practice and future research in this patient group.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
M. Schwarze ◽  
L. Horoba ◽  
J. Block ◽  
C. Putz ◽  
M. Alimusaj ◽  
...  

Objective. To date there is only limited knowledge about the wearing time of orthoses. Ankle-foot orthoses (AFOs) have not been studied with this research question. Additional influences of the orthotic design as well as weekdays and the weekend are also unknown. Design. Monocentric, clinically prospective intervention study. Patients. Inclusion of 10 patients with bilateral spastic cerebral palsy. Methods. Equipment of all subjects with a dynamic ankle-foot orthosis (DAFO) and modular shank supply (MSS, dynamic elastic shank adaptation or ground reaction AFO). Integration of temperature sensors for recording the wearing time for a period of 3 months. Results. The actual wearing time was below the recommendations on actually worn days as well as the average of the entire study period. In addition, the actual usage in terms of days and hours was well below the recommendations. The wearing time showed differences between weekdays and weekend. Differences between DAFO and MSS were not detectable. Conclusion. The actual usage behavior of ankle-foot orthoses differs from the recommendations of the prescriber. This applies to both DAFOs and modular use with shank supplies. Environmental factors may have a significant impact on wearing times on weekdays and the weekend.


2016 ◽  
Vol 41 (3) ◽  
pp. 274-285 ◽  
Author(s):  
Hwan Choi ◽  
Tishya Anne Leong Wren ◽  
Katherine Muterspaugh Steele

Background:Many individuals with cerebral palsy wear ankle foot orthoses during daily life. Orthoses influence joint motion, but how they impact muscle remains unclear. In particular, the gastrocnemius is commonly stiff in cerebral palsy. Understanding whether orthoses stretch or shorten this muscle during daily life may inform orthosis design and rehabilitation.Objectives:This study investigated the impact of different ankle foot orthoses on gastrocnemius operating length during walking in children with cerebral palsy.Study design:Case series, within subject comparison of gastrocnemius operating length while walking barefoot and with two types of ankle foot orthoses.Methods:We performed gait analyses for 11 children with cerebral palsy. Each child was fit with two types of orthoses: a dynamic ankle foot orthosis (Cascade dynamic ankle foot orthosis) and an adjustable dynamic response ankle foot orthosis (Ultraflex ankle foot orthosis). Musculoskeletal modeling was used to quantify gastrocnemius musculotendon operating length and velocity with each orthosis.Results:Walking with ankle foot orthoses could stretch the gastrocnemius more than barefoot walking for some individuals; however, there was significant variability between participants and orthoses. At least one type of orthosis stretched the gastrocnemius during walking for 4/6 and 3/5 of the Gross Motor Functional Classification System Level I and III participants, respectively. AFOs also reduced peak gastrocnemius lengthening velocity compared to barefoot walking for some participants, with greater reductions among the Gross Motor Functional Classification System Level III participants. Changes in gastrocnemius operating length and lengthening velocity were related to changes in ankle and knee kinematics during gait.Conclusion:Ankle foot orthoses impact gastrocnemius operating length during walking and, with proper design, may assist with stretching tight muscles in daily life.Clinical relevanceDetermining whether ankle foot orthoses stretch tight muscles can inform future orthotic design and potentially provide a platform for integrating therapy into daily life. However, stretching tight muscles must be balanced with other goals of orthoses such as improving gait and preventing bone deformities.


2012 ◽  
Vol 37 (2) ◽  
pp. 95-107 ◽  
Author(s):  
Nicola Eddison ◽  
Nachiappan Chockalingam

Background:There are a wide variety of ankle foot orthoses used in clinical practice which are characterised by their design, the material used and the stiffness of that material. Changing any of these three components will alter the effect of the ankle foot orthosis on gait.Objectives:The purpose of this article is to provide an overview on the available research on ankle foot orthosis–footwear combination tuning on the gait characteristics of children with cerebral palsy through a structured review.Study Design:Literature review.Methods:A thorough search of previous studies published in English was conducted within all major databases using relevant phrases without any limits for the dates. These searches were then supplemented by tracking all key references from the appropriate articles identified including hand searching of published books where relevant.Results:To date, there are 947 papers in the literature pertaining to the study of ankle foot orthosis. Of these, 153 investigated the use of ankle foot orthosis for children with cerebral palsy. All the studies included in this review were of a within-subjects design and the evidence levels were generally low.Conclusions:The overall results suggested that ankle foot orthosis–footwear combination tuning has the potential to improve the kinematics and kinetics of gait in children with cerebral palsy. However, the review highlights a lack of well-designed and adequately powered studies.Clinical relevanceWhile the research described in this article indicates an improvement in the gait of children with cerebral palsy following tuning of their ankle foot orthosis–footwear combination, there is still a paucity of research with quantitative data on the effects of kinematics and kinetics of ankle foot orthosis–footwear combination tuning, comparing untuned ankle foot orthosis–footwear combinations with tuned ankle foot orthosis–footwear combination. Furthermore, current research does not identify the effect of tuning on energy efficiency.


2012 ◽  
Vol 37 (2) ◽  
pp. 145-151
Author(s):  
Mina Arvin ◽  
Mojtaba Kamyab ◽  
Vahideh Moradi ◽  
Behnam Hajiaghaei ◽  
Nader Maroufi

Background: Ankle-foot orthoses are usually used in combination with footwear. Shoe design can have a significant effect on kinematics of the lower limb joints and line of action of the ground reaction force during walking. But, ankle-foot orthosis–footwear combination is not appropriate for indoor barefoot walking in some Asian cultures. In this study, we have modified a solid ankle-foot orthosis in order to set it in the same position as a solid ankle-foot orthosis–footwear combination. Objective: To investigate the effect of a modified solid ankle-foot orthosis; a solid ankle-foot orthosis which can be locked in different positions on gait and balance performance in comparison with a conventional solid ankle-foot orthosis, a common solid ankle-foot orthosis–shoe combination in asymptomatic adults. Study Design: Cross sectional. Methods: Two standard solid ankle-foot orthoses were manufactured with the ankle joint in neutral position. Then, one of these solid ankle-foot orthoses was modified in order to allow locking in a different alignment. Walk across, limit of stability, and sit-to-stand tests of the balance master system were performed while participants wore the modified solid ankle-foot orthosis aligned in 5°–7° anterior inclination without a shoe and a conventional solid ankle-foot orthosis–shoe combination. Results: There was no significant change in walking speed, step length, and step width with the conventional and modified solid ankle-foot orthoses. In addition, movement velocity and maximum excursion of the center of gravity during the limit of stability test were not different, although the maximal forward excursion of the center of gravity was longer when wearing the modified solid ankle-foot orthosis compared to the conventional solid ankle-foot orthosis–shoe combination ( P = 0.000). Sway velocity of the center of gravity did not change during the sit-to-stand test. Conclusion: The results demonstrated that the modified solid ankle-foot orthosis had the same effects as the conventional solid ankle-foot orthosis–shoe combination on the gait and balance performance of asymptomatic adults. Clinical relevance The findings of the present study can be used as the basis for further investigations on the efficacy of the modified solid ankle-foot orthoses in different neuromuscular populations in order to help people who do not wear shoes at home, as is the custom in some Asian cultures.


2014 ◽  
Vol 30 (6) ◽  
pp. 728-731 ◽  
Author(s):  
Yvette L. Kerkum ◽  
Merel-Anne Brehm ◽  
Annemieke I. Buizer ◽  
Josien C. van den Noort ◽  
Jules G. Becher ◽  
...  

A rigid ventral shelf ankle foot orthosis (AFO) may improve gait in children with spastic cerebral palsy (SCP) whose gait is characterized by excessive knee flexion in stance. However, these AFOs can also impede ankle range of motion (ROM) and thereby inhibit push-off power. A more spring-like AFO can enhance push-off and may potentially reduce walking energy cost. The recent development of an adjustable spring-hinged AFO now allows adjustment of AFO stiffness, enabling tuning toward optimal gait performance. This study aims to quantify the mechanical properties of this spring-hinged AFO for each of its springs and settings. Using an AFO stiffness tester, two AFO hinges and their accompanying springs were measured. The springs showed a stiffness range of 0.01−1.82 N·m·deg−1. The moment-threshold increased with increasing stiffness (1.13–12.1 N·m), while ROM decreased (4.91–16.5°). Energy was returned by all springs (11.5–116.3 J). These results suggest that the two stiffest available springs should improve joint kinematics and enhance push-off in children with SCP walking with excessive knee flexion.


2021 ◽  
Author(s):  
IlHyun Son ◽  
GyuChang Lee

Abstract Background: It has been reported the effects of a hinged ankle-foot orthosis on the gait ability of children with cerebral palsy. However, no studies investigated the effects of the dorsiflexion angle of the hinged ankle-foot orthosis on the spatiotemporal gait parameters of children with cerebral palsy. This study aimed to investigate the immediate effects of a 10° dorsiflexion inducing ankle-foot orthosis the spatiotemporal gait parameters of children with spastic diplegia compared to barefoot and a hinged ankle-foot orthosis.Methods: This study was cross-over design. 10 children with spastic diplegia were walked with barefoot, a hinged ankle-foot orthosis, and a 10° dorsiflexion inducing ankle-foot orthosis. GAITRite was used to collect the spatiotemporal gait parameters including gait velocity, cadence, step length, stride length, single leg support, and double leg support. Results: It showed that a 10° dorsiflexion inducing ankle-foot orthosis significantly improved the gait velocity, cadence, step length, stride length, single leg support, and double leg support than barefoot and a hinged ankle-foot orthosis (p<.05). Conclusion: The results of this study implied that a 10° dorsiflexion inducing ankle-foot orthosis could improve the gait ability of children with spastic diplegia more than barefoot or a hinged ankle-foot orthosis. High quality future studies will need to examine the effects of hinged ankle-foot orthosis on gait ability according to dorsiflexion angles.


2015 ◽  
Vol 30 (6) ◽  
pp. 617-622 ◽  
Author(s):  
Yvette L. Kerkum ◽  
Merel-Anne Brehm ◽  
Kim van Hutten ◽  
Josien C. van den Noort ◽  
Jaap Harlaar ◽  
...  

2017 ◽  
Vol 42 (3) ◽  
pp. 245-253 ◽  
Author(s):  
Harald Böhm ◽  
Hösl Matthias ◽  
Frank Braatz ◽  
Leonhard Döderlein

Background: Floor reaction ankle–foot orthoses are commonly prescribed to improve knee extension of children with cerebral palsy having crouch gait. Their effectiveness is debated. Therefore, the objective of this study is to optimize current prescription criteria for the improvement of crouch gait. Study design: Cross-sectional interventional study. Methods: A total of 22 patients with bilateral spastic cerebral palsy, between 6 and 17 years, Gross Motor Function Classification System II–IV participated in this study. Instrumented gait analysis was done under three conditions: barefoot, shoed, and with orthotics. Patients were divided into two groups: good and non-responders with more and less than 8.8° improvement of knee extension during walking, respectively. A multiple predictor analysis was done on parameters that were different between groups. Results: In total, 12 of 22 patients showed good response in knee extension with a mean change of 17° (standard deviation = 5°). Good responders showed a significantly smaller walking velocity, knee extension strength, ankle plantarflexion strength, and greater external foot progression angle compared to non-responders. Foot progression angle together with ankle plantarflexion strength explained 37% of the variance in improvement of knee extension. Conclusion: With appropriate patient selection, an improvement of crouch gait by ankle–foot orthoses of 17° (standard deviation = 5°) can be expected. Patients with slow velocity, weak plantarflexors, and external foot progression benefit most. Joint contractures were no contraindications. Clinical relevance This study showed that gait in patients with low functional level benefit most from ankle–foot orthoses. Unlike in patients with higher functional status, contractures of hip, knee, and ankle did not reduce the positive effects on gait. The suggested prescription criteria may help to better select appropriate patients for orthotics.


2020 ◽  
pp. 030936462095290
Author(s):  
David Lahoud ◽  
Christine HE Teng ◽  
Erez Nusem ◽  
Joshua Burns ◽  
Cara Wrigley ◽  
...  

Background: The evaluation of ankle–foot orthoses is primarily focused on biomechanical performance, with comparatively less studies pertaining to users’ quality of life and experiential factors. Objectives: To investigate how child users regard acquisition and use of ankle–foot orthoses through the perspectives of child users, parents/carers and practitioners. Study design: Inductive content analysis of secondary data. Methods: Child user and parent/carer perspectives, as communicated by them and by practitioners, were collected from online platforms and formal publications. Data and themes were analysed through an inductive approach. Investigator triangulation was used to increase trustworthiness and reduce bias. Results: We found and analysed 223 data points from 30 informal online platforms and 15 formal publications. These data clustered into five key themes relating to user experience with ankle–foot orthoses, including materials, structure, aesthetics, service and impact. Child users had mixed opinions about ankle–foot orthoses, reporting satisfaction with the functional improvements resulting from ankle–foot orthosis wear, while noting negative feelings from the experience of acquiring and using the device. Conclusion: This research suggests that considering the five themes in ankle–foot orthosis provision could improve the child user experience, inform future ankle–foot orthosis design, and improve clinical outcomes.


Sign in / Sign up

Export Citation Format

Share Document