Tactile Detection Thresholds for a Single Asperity on an Otherwise Smooth Surface

1983 ◽  
Vol 1 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Roland S. Johansson ◽  
Robert H. Lamotte
2005 ◽  
Vol 94 (2) ◽  
pp. 928-933 ◽  
Author(s):  
James B. Fallon ◽  
David L. Morgan

Stochastic resonance describes a phenomenon whereby the addition of “noise” to the input of a nonlinear system can improve sensitivity. “Fully tuneable stochastic resonance” is a particular form of the phenomenon that requires the matching of two time scales: one being that of the subthreshold periodic stimulus of the system and the other being the noise-induced response of the system. First proposed in 1981, stochastic resonance has been reported in a wide range of biological systems; however, conclusive experimental evidence for fully tuneable stochastic resonance in biological systems is limited. Evidence of fully tuneable stochastic resonance in the response of slowly adapting type I mechanoreceptors in the toad is presented. The results are extended to include the first evidence supporting fully tuneable stochastic resonance in psychophysical experiments, namely tactile detection thresholds, indicating that the human CNS is capable of accessing the improved information available via fully tuneable stochastic resonance.


1986 ◽  
Vol 63 (3) ◽  
pp. 1180-1182
Author(s):  
Antti Pertovaara ◽  
Ilkka Linnankoski

Tactile detection thresholds for single sinusoidal mechanical pulses increased with decreases in the frequency of the stimulus pulse (from 150 to 20 Hz) in a monkey's skin. The results correspond with those of similar electrophysiological studies.


1986 ◽  
Vol 56 (4) ◽  
pp. 1109-1128 ◽  
Author(s):  
R. H. LaMotte ◽  
J. Whitehouse

The capacities of humans to detect the presence of a single raised dot of 550 micron diameter on a smooth plate and to judge the magnitude of evoked sensation were determined for dots of different heights, stroked at different velocities across the passive fingerpad. Evoked responses to the same stimuli were recorded from single, slowly adapting (SA), rapidly adapting (RA), and Pacinian (PC) mechanoreceptive peripheral nerve fibers innervating the fingerpad of anesthetized macaque monkeys. When the stroke velocity was 10 mm/s, dot height detection thresholds, as determined from measurements of detection sensitivity were between 1 and 3 microns for all human observers. From fiber recordings in monkeys, the RAs had dot height thresholds of 2-4 microns, i.e., within the range of human detection thresholds. The dot height thresholds were 8 microns or greater for SAs and 21 micron or greater for PCs. In contrast, force thresholds for punctate von Frey filaments did not differ for RAs and SAs and were lowest for PCs. The magnitude of sensation evoked in human increased with increases in dot height above threshold. Similarly, the number of nerve impulses evoked in monkey RAs increased with dot height as did the widths of RA receptive fields. Neither changes in stroke velocity from 10 to 40 mm/s nor changes in vertical force applied by the dot plate to the skin altered sensory magnitude evoked by a 15-microns high dot or the number of impulses evoked in RAs. However, a decrease in stroke velocity from 10 to 1.5 mm/s elevated sensory detection thresholds and, for the 15-microns high dot, decreased sensory magnitude, the number of impulses in RAs, and the widths of RA receptive fields. It was hypothesized that the mechanical event responsible for activating the RA was the lateral deformation of elevated regions of skin. In support of this, the number of impulses evoked in RAs by a dot was greater when the dot was stroked across, as opposed to along, the papillary ridges. Also, under certain stimulus conditions, a correspondence was observed between the occurrence of each action potential in an RA and the passage of the leading edge of the dot across the peak of a papillary ridge. It is concluded that the responses of RAs alone account for the sensory capacity to detect a dot of minimal height on a smooth surface with the fingerpad.(ABSTRACT TRUNCATED AT 400 WORDS)


Author(s):  
B.V.V. Prasad ◽  
E. Marietta ◽  
J.W. Burns ◽  
M.K. Estes ◽  
W. Chiu

Rotaviruses are spherical, double-shelled particles. They have been identified as a major cause of infantile gastroenteritis worldwide. In our earlier studies we determined the three-dimensional structures of double-and single-shelled simian rotavirus embedded in vitreous ice using electron cryomicroscopy and image processing techniques to a resolution of 40Å. A distinctive feature of the rotavirus structure is the presence of 132 large channels spanning across both the shells at all 5- and 6-coordinated positions of a T=13ℓ icosahedral lattice. The outer shell has 60 spikes emanating from its relatively smooth surface. The inner shell, in contrast, exhibits a bristly surface made of 260 morphological units at all local and strict 3-fold axes (Fig.l).The outer shell of rotavirus is made up of two proteins, VP4 and VP7. VP7, a glycoprotein and a neutralization antigen, is the major component. VP4 has been implicated in several important functions such as cell penetration, hemagglutination, neutralization and virulence. From our earlier studies we had proposed that the spikes correspond to VP4 and the rest of the surface is composed of VP7. Our recent structural studies, using the same techniques, with monoclonal antibodies specific to VP4 have established that surface spikes are made up of VP4.


2020 ◽  
Author(s):  
Jason He ◽  
Ericka Wodka ◽  
Mark Tommerdahl ◽  
Richard Edden ◽  
Mark Mikkelsen ◽  
...  

Alterations of tactile processing have long been identified in autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). However, the extent to which these alterations are disorder-specific, rather than disorder-general, and how they relate to the core symptoms of each disorder, remains unclear. We measured and compared tactile detection, discrimination and order judgment thresholds between a large sample of children with ASD, ADHD, ASD + ADHD combined and typically developing controls. The pattern of results suggested that while difficulties with tactile detection and order judgement were more common in children with ADHD, difficulties with tactile discrimination were more common in children with ASD. Strikingly, subsequent correlation analyses found that the disorder-specific alterations suggested by the group comparisons were also exclusively related to the core symptoms of each respective disorder. These results suggest that disorder-specific alterations of lower-level sensory processes exist and are specifically related to higher-level clinical symptoms of each disorder.


Author(s):  
Mary Ann Nailos ◽  
Dan Stein ◽  
Lawrence T. Nielsen ◽  
Anna Iwasinska

Abstract The detection and identification of substances that give rise to aromas and off-odors is often a difficult task. Perception of odors is very subjective and odor detection thresholds vary from person to person. The identification of trace levels of compounds responsible for perceived odors is difficult using conventional analytical tools. This paper will focus on a novel method for sampling and analyzing aromatic volatile compounds using an analytical system specifically designed for odor analysis.


Sign in / Sign up

Export Citation Format

Share Document