Central Administration of Kisspeptin-10 Inhibits Water and Sodium Excretion of Anesthetized Male Rats and the Involvement of Arginine Vasopressin

2010 ◽  
Vol 35 (3) ◽  
pp. 128-136 ◽  
Author(s):  
Shi-Chao Ten ◽  
Shou-Yong Gu ◽  
Yun-Fei Niu ◽  
Xiao-Fei An ◽  
Ming Yan ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
L. Van Schaik ◽  
C. Kettle ◽  
R. Green ◽  
W. Sievers ◽  
M. W. Hale ◽  
...  

AbstractThe role of central orexin in the sympathetic control of interscapular brown adipose tissue (iBAT) thermogenesis has been established in rodents. Stimulatory doses of caffeine activate orexin positive neurons in the lateral hypothalamus, a region of the brain implicated in stimulating BAT thermogenesis. This study tests the hypothesis that central administration of caffeine is sufficient to activate BAT. Low doses of caffeine administered either systemically (intravenous [IV]; 10 mg/kg) and centrally (intracerebroventricular [ICV]; 5–10 μg) increases BAT thermogenesis, in anaesthetised (1.5 g/kg urethane, IV) free breathing male rats. Cardiovascular function was monitored via an indwelling intra-arterial cannula and exhibited no response to the caffeine. Core temperature did not significantly differ after administration of caffeine via either route of administration. Caffeine administered both IV and ICV increased neuronal activity, as measured by c-Fos-immunoreactivity within subregions of the hypothalamic area, previously implicated in regulating BAT thermogenesis. Significantly, there appears to be no neural anxiety response to the low dose of caffeine as indicated by no change in activity in the basolateral amygdala. Having measured the physiological correlate of thermogenesis (heat production) we have not measured indirect molecular correlates of BAT activation. Nevertheless, our results demonstrate that caffeine, at stimulatory doses, acting via the central nervous system can increase thermogenesis, without adverse cardio-dynamic impact.


2019 ◽  
Vol 4 (4) ◽  
pp. 137-142
Author(s):  
Vahid Azizi ◽  
Shahrbanoo Oryan ◽  
Homayuon Khazali ◽  
Abdolkarim Hosseini

Introduction: The neuropeptide Y (NPY) in the neural circuits of the hypothalamus has a stimulating effect on reproductive activities in mammals. Kisspeptin (KiSS1) is a quintessential neurotransmitter in the reproductive axis which directly stimulates gonadotropin-releasing hormone neurons in the hypothalamus. The distribution of KiSS1 expressing cells in the pituitary was described previously. Despite earlier reports showing the KiSS1 receptor, G-protein coupled receptor 54 (GPR54) expression in the pituitary, the potential physiological roles of kisspeptin at this gland have remained obscure. Accordingly, this study investigated the role of NPY on the relative expression of Kiss1 and Gpr54 genes in the pituitary gland in male Wistar rats. Methods: In general, 20 male Wistar rats weighing 200-250 g in 4 groups (5 in each group) received saline, NPY (2.3 nM), BIBP3226 (NPY receptor antagonist, 7.8 nM), and NPY+ BIBP3226. Then, they received the simultaneous injection of these molecules through the third ventricle of the brain. Finally, the relative mean expressions of Kiss1 and Gpr54 genes in the anterior pituitary were quantitatively analyzed by the real-time polymerase chain reaction. Results: The central injection of NPY increased the relative mean expressions of Kiss1 and Gpr54 genes in the pituitary gland compared to the control group although the injection of BIBP3226 eradicated these effects. However, the gene expression of Gpr54 in the rats receiving NPY coupled with BIBP3226 in hypophysis in comparison to the group receiving only NPY demonstrated a significant reduction (P<0.05). Conclusion: Overall, the central injection of NPY stimulated the gene expression of Kiss1 and Gpr54 in the pituitary gland.


Circulation ◽  
1952 ◽  
Vol 6 (6) ◽  
pp. 919-924 ◽  
Author(s):  
D. M. GREEN ◽  
H. G. WEDELL ◽  
M. H. WALD ◽  
B. LEARNED

2007 ◽  
Vol 293 (6) ◽  
pp. E1511-E1516 ◽  
Author(s):  
Darleen A. Sandoval ◽  
Bin Gong ◽  
Stephen N. Davis

The aim of this study was to test the hypothesis that antecedent short-term administration of estradiol or progesterone into the central nervous system (CNS) reduces levels of neuroendocrine counterregulatory hormones during subsequent hypoglycemia. Conscious unrestrained male Sprague-Dawley rats were studied during randomized 2-day experiments. Day 1 consisted of an 8-h lateral ventricle infusion of estradiol (1 μg/μl; n = 9), progesterone (1 μg/μl; n = 9), or saline (0.2 μl/min; n = 10). On day 2, a 2-h hyperinsulinemic (30 pmol·kg−1·min−1) hypoglycemic (2.9 ± 0.2 mM) clamp was performed on all rats. Central administration of estradiol on day 1 resulted in significantly lower plasma epinephrine levels during hypoglycemia compared with saline, whereas central administration of progesterone resulted in increased levels of plasma norepinephrine and decreased levels of corticosterone both at baseline and during hypoglycemia. Glucagon responses during hypoglycemia were unaffected by prior administration of estradiol or progesterone. Endogenous glucose production following day 1 estradiol was significantly lower during day 2 hypoglycemia, and consequently, the glucose infusion rate to maintain the glycemia was significantly greater after estradiol administration compared with saline. These data suggest that 1) CNS administration of both female reproductive hormones can have rapid effects in modulating levels of counterregulatory hormones during subsequent hypoglycemia in conscious male rats, 2) forebrain administration of reproductive hormones can significantly reduce pituitary adrenal and sympathetic nervous system drive during hypoglycemia, 3) reproductive steroid hormones produce differential effects on sympathetic nervous system activity during hypoglycemia, and 4) reduction of epinephrine resulted in significantly blunted metabolic counterregulatory responses during hypoglycemia.


1996 ◽  
Vol 1 (4) ◽  
pp. 542-550 ◽  
Author(s):  
C. T. Musabayane ◽  
R. J. Windle ◽  
M. L. Forsling ◽  
R. J. Balment

1996 ◽  
Vol 270 (1) ◽  
pp. H167-H173 ◽  
Author(s):  
S. Lon ◽  
E. Szczepanska-Sadowska ◽  
M. Szczypaczewska

Five series of experiments were performed on conscious trained dogs to find out whether intracranially released arginine vasopressin (AVP) is involved in mediation of central cardiovascular effects of angiotensin II (ANG II). The dogs were implanted with guide tubes leading to the third cerebral ventricle (ICV) and implanted with the intra-arterial catheters. Blood pressure and heart rate were continuously monitored during intracerebroventricular administration of 1) ANG II alone (250 ng), 2) AVP alone (0.01 ng/min during 10 min), 3) ANG II together with AVP, 4) AVP together with AVP V1-receptor antagonist 1(1-mercapto-4-methylcyclohexaneacetic acid)-8-AVP [MeCAAVP, V1ANT,100 ng/min], and 5) ANG II together with V1ANT. The results revealed that 1) ANG II and AVP applied separately elicited significant, long-lasting increases of blood pressure; 2) the maximum pressor effect after ANG II and AVP applied together did not differ from that after separate application of either of these peptides, but the duration of the pressor response was significantly shorter; 3) pretreatment with V1ANT effectively prevented blood pressure increases elicited by central administration of AVP and ANG II; and 4) after blockade of V1 receptors administration of AVP resulted in a significantly delayed decrease of blood pressure below baseline. The results strongly suggest that 1) centrally released AVP mediates the pressor effect of intracerebroventricularly applied ANG II by means of V1 receptors; 2) intracerebroventricularly applied ANG II and AVP interact to activate the mechanism involved in extinction of their pressor effect; and 3) blockade of central V1 receptors uncovers the hypotensive action of centrally applied AVP.


1988 ◽  
Vol 254 (1) ◽  
pp. F32-F37 ◽  
Author(s):  
G. Szenasi ◽  
G. Kottra ◽  
P. Bencsath ◽  
L. Takacs

The effect of acute renal denervation (RD) on water (V), sodium (UNaV), and potassium excretion (UKV) from the hypertrophied and control kidney was studied in 5-sec-butyl-5-ethyl-2-thiobarbituric acid (Inactin)-anesthetized male rats 7 days after unilateral nephrectomy (Nx) or sham operation (SNx). V, UNaV, and UKV from the hypertrophied kidney were similar before and after RD or sham RD. In contrast, in SNx rats, left RD resulted in an ipsilateral increase in V (from 2.76 +/- 0.39 to 5.31 +/- 0.99 microliters.min-1.g-1), UNaV (from 109 +/- 36 to 857 +/- 331 nmol.min-1.g-1), and UKV (from 144 +/- 44 to 807 +/- 130 nmol.min-1.g-1; P less than 0.05 in all cases). Moreover, renal parameters from the hypertrophied kidney, subjected to either RD or sham RD, were not different from values after RD in SNx rats (V: Nx, sham RD = 5.72 +/- 1.10; Nx, RD = 5.23 +/- 0.66; SNx, RD = 5.31 +/- 0.99 microliters.min-1.g-1; UNaV: Nx, sham RD = 896 +/- 319; Nx, RD = 821 +/- 262; SNx, RD = 857 +/- 331 nmol.min-1.g-1; UKV: Nx, sham RD = 782 +/- 127; Nx, RD = 860 +/- 82; SNx, RD = 807 +/- 130 nmol.min-1.g-1). In additional experiments, integrated renal nerve activity (RNA) to the kidney in Nx and SNx rats was 4.0 +/- 0.3 and 10.7 +/- 0.9 microV (P less than 0.05), respectively.(ABSTRACT TRUNCATED AT 250 WORDS)


1974 ◽  
Vol 76 (3) ◽  
pp. 539-555 ◽  
Author(s):  
D. Haack ◽  
E. Hackenthal ◽  
E. Homsy ◽  
B. Möhring ◽  
J. Möhring

ABSTRACT In normal rats on a standard sodium diet, the administration of 9-alpha-fluorohydrocortisone (9aFF) induced a rapid increase of blood pressure in parallel to an increase of plasma volume. Water and potassium balances became negative. Urinary sodium excretion remained unchanged or increased after high doses, whereas urinary sodium concentration and faecal sodium excretion were reduced. The diurnal rhythm of water and sodium excretion changed: during the night-period, renal water and sodium excretion were diminished, whereas during the day-period both were enhanced. Thus, some effects of 9aFF on electrolyte and water balance are similar to those of DOC, while other effects are similar to those of cortisone. It is postulated that a shift of fluid from intracellular to extracellular compartments, which increases plasma volume, is of critical importance for the 9aFF-induced blood pressure elevation in rats.


Sign in / Sign up

Export Citation Format

Share Document