Role of stress system disturbance and enhanced novelty response in spatial learning of NCAM-deficient mice

Stress ◽  
2013 ◽  
Vol 16 (6) ◽  
pp. 638-646 ◽  
Author(s):  
Joerg Brandewiede ◽  
Mira Jakovcevski ◽  
Oliver Stork ◽  
Melitta Schachner
2007 ◽  
Author(s):  
Emily Kern ◽  
David H. Uttal ◽  
Natalya Murashev ◽  
Linda Liu Hand
Keyword(s):  

2021 ◽  
Vol 22 (11) ◽  
pp. 5645
Author(s):  
Stefano Morotti ◽  
Haibo Ni ◽  
Colin H. Peters ◽  
Christian Rickert ◽  
Ameneh Asgari-Targhi ◽  
...  

Background: The mechanisms underlying dysfunction in the sinoatrial node (SAN), the heart’s primary pacemaker, are incompletely understood. Electrical and Ca2+-handling remodeling have been implicated in SAN dysfunction associated with heart failure, aging, and diabetes. Cardiomyocyte [Na+]i is also elevated in these diseases, where it contributes to arrhythmogenesis. Here, we sought to investigate the largely unexplored role of Na+ homeostasis in SAN pacemaking and test whether [Na+]i dysregulation may contribute to SAN dysfunction. Methods: We developed a dataset-specific computational model of the murine SAN myocyte and simulated alterations in the major processes of Na+ entry (Na+/Ca2+ exchanger, NCX) and removal (Na+/K+ ATPase, NKA). Results: We found that changes in intracellular Na+ homeostatic processes dynamically regulate SAN electrophysiology. Mild reductions in NKA and NCX function increase myocyte firing rate, whereas a stronger reduction causes bursting activity and loss of automaticity. These pathologic phenotypes mimic those observed experimentally in NCX- and ankyrin-B-deficient mice due to altered feedback between the Ca2+ and membrane potential clocks underlying SAN firing. Conclusions: Our study generates new testable predictions and insight linking Na+ homeostasis to Ca2+ handling and membrane potential dynamics in SAN myocytes that may advance our understanding of SAN (dys)function.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Zhen-Zhen Liu ◽  
Yong-Jun Yang ◽  
Feng-Hua Zhou ◽  
Ke Ma ◽  
Xiao-Qi Lin ◽  
...  

AbstractGasdermin D (GSDMD), a member of the gasdermin protein family, is a caspase substrate, and its cleavage is required for pyroptosis and IL-1β secretion. To date, the role and regulatory mechanism of GSDMD during cutaneous microbial infection remain unclear. Here, we showed that GSDMD protected against Staphylococcus aureus skin infection by suppressing Cxcl1–Cxcr2 signalling. GSDMD deficiency resulted in larger abscesses, more bacterial colonization, exacerbated skin damage, and increased inflammatory cell infiltration. Although GSDMD deficiency resulted in defective IL-1β production, the critical role of IL-1β was counteracted by the fact that Caspase-1/11 deficiency also resulted in less IL-1β production but did not aggravate disease severity during S. aureus skin infection. Interestingly, GSDMD-deficient mice had increased Cxcl1 secretion accompanied by increased recruitment of neutrophils, whereas Caspase-1/11-deficient mice presented similar levels of Cxcl1 and neutrophils as wild-type mice. Moreover, the absence of GSDMD promoted Cxcl1 secretion in bone marrow-derived macrophages induced by live, dead, or different strains of S. aureus. Corresponding to higher transcription and secretion of Cxcl1, enhanced NF-κB activation was shown in vitro and in vivo in the absence of GSDMD. Importantly, inhibiting the Cxcl1–Cxcr2 axis with a Cxcr2 inhibitor or anti-Cxcl1 blocking antibody rescued host defence defects in the GSDMD-deficient mice. Hence, these results revealed an important role of GSDMD in suppressing the Cxcl1–Cxcr2 axis to facilitate pathogen control and prevent tissue damage during cutaneous S. aureus infection.


2021 ◽  
Vol 22 (2) ◽  
pp. 722
Author(s):  
Yukino Ogura ◽  
Kazuko Tajiri ◽  
Nobuyuki Murakoshi ◽  
DongZhu Xu ◽  
Saori Yonebayashi ◽  
...  

Neutrophils are recruited into the heart at an early stage following a myocardial infarction (MI). These secrete several proteases, one of them being neutrophil elastase (NE), which promotes inflammatory responses in several disease models. It has been shown that there is an increase in NE activity in patients with MI; however, the role of NE in MI remains unclear. Therefore, the present study aimed to investigate the role of NE in the pathogenesis of MI in mice. NE expression peaked on day 1 in the infarcted hearts. In addition, NE deficiency improved survival and cardiac function post-MI, limiting fibrosis in the noninfarcted myocardium. Sivelestat, an NE inhibitor, also improved survival and cardiac function post-MI. Flow cytometric analysis showed that the numbers of heart-infiltrating neutrophils and inflammatory macrophages (CD11b+F4/80+CD206low cells) were significantly lower in NE-deficient mice than in wild-type (WT) mice. At the border zone between intact and necrotic areas, the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive apoptotic cells was lower in NE-deficient mice than in WT mice. Western blot analyses revealed that the expression levels of insulin receptor substrate 1 and phosphorylation of Akt were significantly upregulated in NE-knockout mouse hearts, indicating that NE deficiency might improve cardiac survival by upregulating insulin/Akt signaling post-MI. Thus, NE may enhance myocardial injury by inducing an excessive inflammatory response and suppressing Akt signaling in cardiomyocytes. Inhibition of NE might serve as a novel therapeutic target in the treatment of MI.


2006 ◽  
Vol 203 (7) ◽  
pp. 1795-1803 ◽  
Author(s):  
Himanshu Kumar ◽  
Taro Kawai ◽  
Hiroki Kato ◽  
Shintaro Sato ◽  
Ken Takahashi ◽  
...  

IFN-β promoter stimulator (IPS)-1 was recently identified as an adapter for retinoic acid–inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (Mda5), which recognize distinct RNA viruses. Here we show the critical role of IPS-1 in antiviral responses in vivo. IPS-1–deficient mice showed severe defects in both RIG-I– and Mda5-mediated induction of type I interferon and inflammatory cytokines and were susceptible to RNA virus infection. RNA virus–induced interferon regulatory factor-3 and nuclear factor κB activation was also impaired in IPS-1–deficient cells. IPS-1, however, was not essential for the responses to either DNA virus or double-stranded B-DNA. Thus, IPS-1 is the sole adapter in both RIG-I and Mda5 signaling that mediates effective responses against a variety of RNA viruses.


2021 ◽  
pp. 1-7
Author(s):  
Shota Sakai ◽  
Asami Makino ◽  
Akihito Nishi ◽  
Takeshi Ichikawa ◽  
Tadashi Yamashita ◽  
...  

Sphingomyelin (SM) is a constituent of cellular membranes, while ceramides (Cer) produced from SM on plasma membranes serve as a lipid mediator that regulates cell proliferation, differentiation, and apoptosis. In the skin, SM also is a precursor of Cer, an important constituent of epidermal permeability barrier. We investigated the role of epidermal SM synthase (SMS)2, an isoform of SMS, which modulates SM and Cer levels on plasma membranes. Although SMS2-knockout (SMS2-KO) mice were not neonatal lethal, an ichthyotic phenotype with epidermal hyperplasia and hyperkeratosis was evident at birth, which persisted until 2 weeks of age. These mice showed abnormal lamellar body morphology and secretion, and abnormal extracellular lamellar membranes in the stratum corneum. These abnormalities were no longer evident by 4 weeks of age in SMS2-KO mice. Our study suggests that (1) exposure to a dry terrestrial environment initiates compensatory responses, thereby normalizing epidermal ichthyotic abnormalities and (2) that a nonlethal gene abnormality can cause an ichthyotic skin phenotype.


2017 ◽  
Vol 12 ◽  
pp. 62-65
Author(s):  
Yasuharu Abe ◽  
Aya Nambu ◽  
Sachiko Yamaguchi ◽  
Ayako Takamori ◽  
Hajime Suto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document