scholarly journals Influences of keratinocyte growth factor - mesenchymal stem cells on chronic liver injury in rats

2015 ◽  
Vol 44 (8) ◽  
pp. 1810-1817 ◽  
Author(s):  
Zhengliang Zhang ◽  
Youguang Pu ◽  
Qingsong Pan ◽  
Xiaodan Xu ◽  
Xiaoyun Yan
Author(s):  
Hyeon Tae Kang ◽  
Kiseok Jang ◽  
Dae Won Jun ◽  
Eileen L Yoon ◽  
Seung Min Lee ◽  
...  

2016 ◽  
Vol 69 (1) ◽  
pp. 19-29 ◽  
Author(s):  
Huantian Cui ◽  
Zhen Liu ◽  
Li Wang ◽  
Yuhong Bian ◽  
Wen Li ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-22 ◽  
Author(s):  
Ioannis G. Papanikolaou ◽  
Charalambos Katselis ◽  
Konstantinos Apostolou ◽  
Themistoklis Feretis ◽  
Maria Lymperi ◽  
...  

Mesenchymal stem cells (MSCs) are an attractive source for regenerative medicine because they are easily accessible through minimally invasive methods and have the potential to enhance liver regeneration (LG) and improve liver function, following partial hepatectomy (PH) and acute or chronic liver injury. A systematic review of the literature was conducted for articles published up to September 1st, 2016, using the MEDLINE database. The keywords that were used in various combinations were as follows: “Mesenchymal stem cells”, “transplantation”, “stem cells”, “adipose tissue derived stem cells”, “bone marrow-derived stem cells”, “partial hepatectomy”, “acute liver failure”, “chronic liver failure”, “liver fibrosis”, “liver cirrhosis”, “rats”, “mice”, and “liver regeneration”. All introduced keywords were searched for separately in MeSH Database to control relevance and terminological accuracy and validity. A total of 41 articles were identified for potential inclusion and reviewed in detail. After a strict selection process, a total of 28 articles were excluded, leaving 13 articles to form the basis of this systematic review. MSCs transplantation promoted LG and improved liver function. Furthermore, MSCs had the ability to differentiate in hepatocyte-like cells, increase survival, and protect hepatocytes by paracrine mechanisms. MSCs transplantation may provide beneficial effects in the process of LG after PH and acute or chronic liver injury. They may represent a new therapeutic option to treat posthepatectomy acute liver failure.


2008 ◽  
Vol 88 (10) ◽  
pp. 1090-1100 ◽  
Author(s):  
Erawan Borkham-Kamphorst ◽  
Evgenia Kovalenko ◽  
Claudia R C van Roeyen ◽  
Nikolaus Gassler ◽  
Michael Bomble ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5805-5805
Author(s):  
Lukun Zhou ◽  
Shuang Liu ◽  
Chuanyi M. Lu ◽  
Jianfeng Yao ◽  
Yuyan Shen ◽  
...  

Abstract Liver injury associated with veno-occlusive disease and graft-versus-host disease (GVHD) is a frequent and severe complication of hematopoietic stem cell transplantation, and remains an important cause of transplant-related mortality. Bone marrow derived mesenchymal stem cells (MSCs) have been evaluated for the prevention and treatment of refractory GVHD. However, poor cell viability has limited the therapeutic capacity of mesenchymal stromal cell therapy in vivo. In this study, we genetically engineered C57BL/6 mouse bone marrow MSCs using ex vivo retroviral transduction to overexpress Akt1, a serine threonine kinase and pro-survival signal protein, and tested the hypothesis that Akt1-expressing MSCs (Akt1-MSCs) are more resistant to apoptosis and can ameliorate acute liver injury induced by concanavalin A (ConA) in BALB/c mice. Cell proliferation and apoptosis analyses showed that, under both regular culture and high concentration IFN-γ (100 ng/mL) stimulation conditions, Akt1-GFP-MSCs had proliferation and survival (anti-apoptotic) advantages with down-regulated apoptosis pathways, compared to control GFP-MSCs. Twenty-four hours after receiving lethal dose of ConA (40 mg/kg, intravenous) (N=10 each group), no mouse survived, with or without 1x106 Akt1-MSCs or GFP-MSCs administration (intravenous); however, 3 and 1 survived in the 5×106 Akt1-MSCs group and 5×106 GFP-MSCs groups, respectively. In subsequent sub-lethal dose ConA (20 mg/kg) experiments, compared to GFP-MSCs, mice received Akt1-MSCs administration had significantly lower serum AST, ALT, TNF-α and IFN-γ levels and less histopathological abnormalities. In addition, Akt1-MSCs treated mice had significantly higher serum concentrations of IL-10, vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF). In vivo imaging showed that, hepatic fluorescence signal in sub-lethal ConA+Akt1-MSCs group was significantly stronger than ConA+GFP-MSCs group on day 0, and persisted up to 14 days, whereas the signal in ConA+GFP-MSCs, Akt1-MSCs and GFP-MSCs groups was negligible on both day 7 and day 14. Thus, bone marrow derived MSCs genetically enhanced with Akt1 had survival advantage in vitro and in vivo, and have the potential to be a potent therapy for prevention and amelioration of GVHD-associated liver impairment. Further translational pre-clinical studies are ongoing to further determine the efficacy, dosage and timing of administration of Akt1-MSCs in animal models. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document