The comparative ecologo-phytocoenotical positions of the two feather-grass species (Stipa pennata L. and S. tirsa Stev.) in the plant communities of Yamskaya Steppe (Belgorod region)

2011 ◽  
pp. 29-54
Author(s):  
B. K. Gannibal

There is a general phytocoenotic question — why the species similar taxonomically and ecologically can co-exist within a plant community? The paper deals with two of such species — Stipa pennata L. and S. tirsa Stev., that previously were considered by plant taxonomists as one species. They are reputed to be the most mesophytic feather-grasses, although there are a lot of contradictory opinions about their physiology and ecology. In 1920s and 30s two well-known Russian geobotanists B. Keller and V. Aljekhin conflicted on the problem. In our case both species co-exist in the steppe communities of the protected territory (zapovednik “Belogorie”). The phytocoenotical role of feather-grassesvaries in the different ecotopes. The phytocoenotical roles S. pennata and S. tirsa are very similar in the plant communities growing on the cold slopes. As for the warm sites, the participation of S. pennata in the communities is the same, whereas a presence of S. tirsa is considerably decreased. Each feather-grass de­monstrates a high correlation with specific grass species of communities. The obtained results show the clear phytocoenotic distinctions between two species.

2010 ◽  
Vol 3 (2) ◽  
pp. 155-168 ◽  
Author(s):  
Travis L. Almquist ◽  
Rodney G. Lym

AbstractAminopyralid efficacy on Canada thistle (Cirsium arvense) and potential to injure native species was evaluated in a restored prairie at the Glacial Ridge Preserve managed by The Nature Conservancy in Polk County, MN. Canada thistle stem density was reduced from 17 to 0.1 stems m−2 10 mo after treatment (MAT) with aminopyralid applied in the fall at 120 g ha−1. Aminopyralid also altered the composition of both Canada thistle–infested and native plant communities. Aminopyralid controlled Canada thistle and removed or reduced several undesirable forb species from the restored prairie communities, such as absinth wormwood (Artemisia absinthium) and perennial sowthistle (Sonchus arvensis). A number of high seral forbs were also reduced or removed by aminopyralid, including maximilian sunflower (Helianthus maximiliani) and purple prairie clover (Dalea purpurea). Foliar cover of high seral forbs in the native plant community was reduced from 12.2 to 7% 22 MAT. The cover of high seral grass species, such as big bluestem (Andropogon gerardii) and Indiangrass (Sorghastrum nutans) increased after aminopyralid application in both the Canada thistle–infested and native plant communities and averaged 41.4% cover compared with only 19.4% before removal of Canada thistle. Species richness, evenness, and diversity were reduced after aminopyralid application in both Canada thistle–infested and native plant communities. However, the benefits of Canada thistle control, removal of undesirable species, and the increase in native grass cover should lead to an overall improvement in the long-term stability and composition of the restored prairie plant community, which likely outweigh the short-term effects of a Canada thistle control program.


2015 ◽  
Vol 24 (4) ◽  
pp. 527 ◽  
Author(s):  
Chad S. Boyd ◽  
Kirk W. Davies ◽  
April Hulet

Maintenance and post-fire rehabilitation of perennial bunchgrasses is important for reducing the spread of exotic annual grass species in big sagebrush plant communities. Post-fire rehabilitation decisions are hampered by a lack of tools for determining extent of fire-induced perennial grass mortality. Our objective was to correlate post-fire characteristics with perennial bunchgrass mortality at the plant and plant community scales. We recorded basal area, percent char, depth of burn and soil colour for 174 bunchgrasses across four ecological sites after a 65 000 ha wildfire in south-east Oregon and assessed plant mortality. Mortality was correlated with post-fire soil colour and ecological site; soil colours (black and grey) associated with pre-fire shrub presence had up to five-fold higher mortality than brown soils typical of interspace locations. Models incorporating depth of burn and soil colour correctly predicted mortality for 90% of individual plants; cover of brown soil explained 88% of the variation in bunchgrass mortality at the plant community scale. Our results indicate that soil colour and depth of burn are accurate predictors of bunchgrass mortality at individual plant and plant community scales and could be used to spatially allocate post-fire bunchgrass rehabilitation resources.


2014 ◽  
Vol 20 (3) ◽  
pp. 237 ◽  
Author(s):  
Peter J Berney ◽  
G. Glenn Wilson ◽  
Darren S. Ryder ◽  
R.D.B Whalley ◽  
John Duggin ◽  
...  

We examined the effects of grazing exclusion over a period of 14 years on the species richness and community composition of three plant communities with different dominant species and water regimes in the Gwydir Wetlands in eastern Australia. Responses to grazing exclusion varied among the three plant communities, and were most likely to be evident during dry periods rather than during periods of inundation. In frequently flooded plant communities, there was an increase in phytomass following exclusion of domestic livestock, but changes in plant community composition and species richness due to livestock exclusion varied depending on the morphological attributes of the dominant plant species. In a plant community where tall sedge species were dominant, livestock exclusion further increased their dominance and overall species richness declined. In contrast, where a prostrate grass species such as Paspalum distichum was dominant, species richness increased following livestock exclusion, due to an increase in the abundance of taller dicotyledon species. However, livestock exclusion in a community where flooding was less frequent and native grass species have been largely replaced with the introduced species Phyla canescens, resulted in no significant changes to phytomass, species richness or community composition among the grazing exclusion treatments over time. Our results indicate responses to exclusion of domestic livestock are dependent upon the dominant species within the plant community and will likely vary over time with the extent of wetland inundation. Grazing exclusion alone, without increased flooding, is unlikely to restore floristically degraded floodplain plant communities.


Turczaninowia ◽  
2020 ◽  
Vol 23 (4) ◽  
pp. 32-49
Author(s):  
Polina D. Gudkova ◽  
Andrey Yu. Korolyuk ◽  
Daria D. Ryzhakova ◽  
Elisaveta A. Kriuchkova ◽  
Marchin Nobis

Over the past two centuries, Altai krai, located in the southeastern part of Western Siberia, has undergone significant transformation as a result of the virgin lands development. The vast even territories of the krai, formerly occupied by steppes dominated by the feather grass, are now almost completely plowed up. Many types of steppe communities, as well as plant species associated with them, have become rare. This paper presents the results of the taxonomic revision of the genus Stipa. The genus has a high conservation value and seven of twelve feather grass species growing in the studied area are listed in the “Red Book of Altai Krai”. Based on the revision of the herbarium collections stored in ALTB, LE, NS, NSK, TK and the authors’ collections, a checklist of the genus Stipa in Altai krai and an illustrated identification key were compiled. The synopsis for each species contains a nomenclature name, a brief description, a note on taxonomy, flowering period and typical habitats. In addition, it presents the distribution of species in the territory of the krai in the form of an administrative districts list and point maps. A new record of S. sareptana species, new for Altai krai and Western Siberia, was found while the presence of S. baicalensis was not confirmed. Additionally, lectotype of S. praecapillata is also here designated.


2021 ◽  
Author(s):  
Raúl Ochoa-Hueso ◽  
Rani Carroll ◽  
Juan Piñeiro ◽  
Sally A Power

Abstract Aims Given the key functional role of understorey plant communities and the substantial extent of forest cover at the global scale, investigating understorey community responses to elevated CO2 (eCO2) concentrations, and the role of soil resources in these responses, is important for understanding the ecosystem-level consequences of rising CO2 concentrations for forest ecosystems. Here, we evaluated how experimentally manipulated the availabilities of the two most limiting resources in an extremely phosphorus-limited eucalypt woodland in eastern Australia woodland (i.e. water and phosphorus) can modulate the response of the understorey community to eCO2 in terms of germination, phenology, cover, community composition, and leaf traits. Methods We collected soil containing native soil seed bank to grow experimental understorey plant communities under glasshouse conditions. Important findings Phosphorus addition increased total plant cover, particularly during the first four weeks of growth and under high-water conditions, a response driven by the graminoid component of the plant community. However, the treatment differences diminished as the experiment progressed, with all treatments converging at ~80% plant cover after ~11 weeks. In contrast, plant cover was not affected by eCO2. Multivariate analyses reflected temporal changes in the composition of plant communities, from pots where bare soil was dominant to high-cover pots dominated by a diverse community. However, both phosphorus addition and the interaction between water availability and CO2 affected the temporal trajectory of the plant community during the experiment. Elevated CO2 also increased community-level specific leaf area, suggesting that functional adaptation of plant communities to eCO2 may precede the onset of compositional responses. Given that the response of our seedbank-derived understorey community to eCO2 developed over time and was mediated by interactions with phosphorus and water availability. Our results suggest that a limited role of eCO2 in shaping plant communities in water-limited systems, particularly where low soil nutrient availability constrains productivity responses.


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Sally Power ◽  
Kirk Barnett ◽  
Raul Ochoa-Hueso ◽  
Suzanne Donn ◽  
...  

Climate models project overall a reduction in rainfall amounts and shifts in the timing of rainfall events in mid-latitudes and sub-tropical dry regions, which threatens the productivity and diversity of grasslands. Arbuscular mycorrhizal fungi may help plants to cope with expected changes but may also be impacted by changing rainfall, either via the direct effects of low soil moisture on survival and function or indirectly via changes in the plant community. In an Australian mesic grassland (former pasture) system, we characterised plant and arbuscular mycorrhizal (AM) fungal communities every six months for nearly four years to two altered rainfall regimes: i) ambient, ii) rainfall reduced by 50% relative to ambient over the entire year and iii) total summer rainfall exclusion. Using Illumina sequencing, we assessed the response of AM fungal communities sampled from contrasting rainfall treatments and evaluated whether variation in AM fungal communities was associated with variation in plant community richness and composition. We found that rainfall reduction influenced the fungal communities, with the nature of the response depending on the type of manipulation, but that consistent results were only observed after more than two years of rainfall manipulation. We observed significant co-associations between plant and AM fungal communities on multiple dates. Predictive co-correspondence analyses indicated more support for the hypothesis that fungal community composition influenced plant community composition than vice versa. However, we found no evidence that altered rainfall regimes were leading to distinct co-associations between plants and AM fungi. Overall, our results provide evidence that grassland plant communities are intricately tied to variation in AM fungal communities. However, in this system, plant responses to climate change may not be directly related to impacts of altered rainfall regimes on AM fungal communities. Our study shows that AM fungal communities respond to changes in rainfall but that this effect was not immediate. The AM fungal community may influence the composition of the plant community. However, our results suggest that plant responses to altered rainfall regimes at our site may not be resulting via changes in the AM fungal communities.


2012 ◽  
pp. 66-77 ◽  
Author(s):  
I. A. Lavrinenko ◽  
O. V. Lavrinenko ◽  
D. V. Dobrynin

The satellite images show that the area of marshes in the Kolokolkova bay was notstable during the period from 1973 up to 2011. Until 2010 it varied from 357 to 636 ha. After a severe storm happened on July 24–25, 2010 the total area of marshes was reduced up to 43–50 ha. The mean value of NDVI for studied marshes, reflecting the green biomass, varied from 0.13 to 0.32 before the storm in 2010, after the storm the NDVI decreased to 0.10, in 2011 — 0.03. A comparative analysis of species composition and structure of plant communities described in 2002 and 2011, allowed to evaluate the vegetation changes of marshes of the different topographic levels. They are fol­lowing: a total destruction of plant communities of the ass. Puccinellietum phryganodis and ass. Caricetum subspathaceae on low and middle marches; increasing role of halophytic species in plant communities of the ass. Caricetum glareosae vic. Calamagrostis deschampsioides subass. typicum on middle marches; some changes in species composition and structure of plant communities of the ass. Caricetum glareosae vic. Calamagrostis deschampsioides subass. festucetosum rubrae on high marches and ass. Parnassio palustris–Salicetum reptantis in transition zone between marches and tundra without changes of their syntaxonomy; a death of moss cover in plant communities of the ass. Caricetum mackenziei var. Warnstorfia exannulata on brackish coastal bogs. The possible reasons of dramatic vegetation dynamics are discussed. The dating of the storm makes it possible to observe the directions and rates of the succession of marches vegetation.


2009 ◽  
pp. 27-53
Author(s):  
A. Yu. Kudryavtsev

Diversity of plant communities in the nature reserve “Privolzhskaya Forest-Steppe”, Ostrovtsovsky area, is analyzed on the basis of the large-scale vegetation mapping data from 2000. The plant community classi­fication based on the Russian ecologic-phytocoenotic approach is carried out. 12 plant formations and 21 associations are distinguished according to dominant species and a combination of ecologic-phytocoenotic groups of species. A list of vegetation classification units as well as the characteristics of theshrub and woody communities are given in this paper.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 252
Author(s):  
Tingting Duan ◽  
Jing Zhang ◽  
Zhengjun Wang

Grassland tourism is a very popular leisure activity in many parts of the world. However, the presence of people in these areas causes disturbance to the local environment and grassland resources. This study analyzes the composition, diversity, and productivity under different levels of disturbance of the plant communities in the Kangxi Grassland Tourist Area and the Yeyahu Wetland Nature Reserve of Beijing, China. It aims to identify indicators of plant communities and their responses to different levels of disturbance. Our analysis shows that the plant community density and coverage have a certain compensatory increase under disturbed conditions. With the increase in disturbances, more drought-tolerant species have appeared (increased by 5.7%), some of which have become the grazing-tolerance indicator species in the trampled grazed area (TGA). For plant community productivity, biomass and height are good indicators for distinguishing different disturbances (p < 0.05). In addition, several diversity indices reveal the change of plant communities from different perspectives (three of the four indices were significant at the p < 0.05 level). For soil parameters, soil water content and organic matter concentration help to indicate different disturbance levels (the former has a 64% change). Moreover, the standard deviation of the plant community and soil parameters is also a good indicator of their spatial variability and disturbance levels, especially for the TGA. Our analysis confirms that the indicators of productivity, diversity, and soil parameters can indicate the disturbance level in each subarea from different perspectives. However, under disturbed conditions, a comprehensive analysis of these indicators is needed before we can accurately understand the state of health of the plant community.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Alexia Stokes ◽  
Guillermo Angeles ◽  
Fabien Anthelme ◽  
Eduardo Aranda-Delgado ◽  
Isabelle Barois ◽  
...  

Abstract Objectives Altitude integrates changes in environmental conditions that determine shifts in vegetation, including temperature, precipitation, solar radiation and edaphogenetic processes. In turn, vegetation alters soil biophysical properties through litter input, root growth, microbial and macrofaunal interactions. The belowground traits of plant communities modify soil processes in different ways, but it is not known how root traits influence soil biota at the community level. We collected data to investigate how elevation affects belowground community traits and soil microbial and faunal communities. This dataset comprises data from a temperate climate in France and a twin study was performed in a tropical zone in Mexico. Data description The paper describes soil physical and chemical properties, climatic variables, plant community composition and species abundance, plant community traits, soil microbial functional diversity and macrofaunal abundance and diversity. Data are provided for six elevations (1400–2400 m) ranging from montane forest to alpine prairie. We focused on soil biophysical properties beneath three dominant plant species that structure local vegetation. These data are useful for understanding how shifts in vegetation communities affect belowground processes, such as water infiltration, soil aggregation and carbon storage. Data will also help researchers understand how plant communities adjust to a changing climate/environment.


Sign in / Sign up

Export Citation Format

Share Document