THE ROLE OF DIFFERENT WAYS OF NITRITE OXIDE GENERATION IN MAMMALIAN BLOOD VESSELS IN AGING

Tsitologiya ◽  
2018 ◽  
Vol 60 (1) ◽  
pp. 5-13 ◽  
Author(s):  
N. V. Kuleva ◽  
◽  
D. A. Fedorov ◽  
I. E. Krasovskaya ◽  
◽  
...  
2019 ◽  
Vol 24 (45) ◽  
pp. 5367-5374 ◽  
Author(s):  
Xiaoyun Li ◽  
Seyed M. Moosavi-Basri ◽  
Rahul Sheth ◽  
Xiaoying Wang ◽  
Yu S. Zhang

The role of endovascular interventions has progressed rapidly over the past several decades. While animal models have long-served as the mainstay for the advancement of this field, the use of in vitro models has become increasingly widely adopted with recent advances in engineering technologies. Here, we review the strategies, mainly including bioprinting and microfabrication, which allow for fabrication of biomimetic vascular models that will potentially serve to supplement the conventional animal models for convenient investigations of endovascular interventions. Besides normal blood vessels, those in diseased states, such as thrombosis, may also be modeled by integrating cues that simulate the microenvironment of vascular disorders. These novel engineering strategies for the development of biomimetic in vitro vascular structures will possibly enable unconventional means of studying complex endovascular intervention problems that are otherwise hard to address using existing models.


Author(s):  
Lucia Dacome

Chapter 7 furthers the analysis of the role of anatomical models as cultural currencies capable of transferring value. It does so by expanding the investigation of the early stages of anatomical modelling to include a new setting. In particular, it follows the journey of the Palermitan anatomist and modeller Giuseppe Salerno and his anatomical ‘skeleton’—a specimen that represented the body’s complex web of blood vessels and was presented as the result of anatomical injections. Although Salerno was headed towards Bologna, a major centre of anatomical modelling, he ended his journey in Naples after the nobleman Raimondo di Sangro purchased the skeleton for his own cabinet of curiosities. This chapter considers the creation and viewing of an anatomical display in di Sangro’s Neapolitan Palace from a comparative perspective that highlights how geography and locality played an important part in shaping the culture of mid-eighteenth-century anatomical modelling.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maria I. Alvarez-Vergara ◽  
Alicia E. Rosales-Nieves ◽  
Rosana March-Diaz ◽  
Guiomar Rodriguez-Perinan ◽  
Nieves Lara-Ureña ◽  
...  

AbstractThe human Alzheimer’s disease (AD) brain accumulates angiogenic markers but paradoxically, the cerebral microvasculature is reduced around Aß plaques. Here we demonstrate that angiogenesis is started near Aß plaques in both AD mouse models and human AD samples. However, endothelial cells express the molecular signature of non-productive angiogenesis (NPA) and accumulate, around Aß plaques, a tip cell marker and IB4 reactive vascular anomalies with reduced NOTCH activity. Notably, NPA induction by endothelial loss of presenilin, whose mutations cause familial AD and which activity has been shown to decrease with age, produced a similar vascular phenotype in the absence of Aß pathology. We also show that Aß plaque-associated NPA locally disassembles blood vessels, leaving behind vascular scars, and that microglial phagocytosis contributes to the local loss of endothelial cells. These results define the role of NPA and microglia in local blood vessel disassembly and highlight the vascular component of presenilin loss of function in AD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elieser Hitoshi Watanabe ◽  
Fernando Morbeck Almeida Coelho ◽  
Hilton Leão Filho ◽  
Bruno Eduardo Pedroso Balbo ◽  
Precil Diego Miranda de Menezes Neves ◽  
...  

AbstractRenal angiomyolipomas hemorrhage is associated with their size and vascular constitution. The effects of sirolimus on different components of angiomyolipomas was analyzed in patients with tuberous sclerosis complex, sporadic lymphangioleiomyomatosis and multiple sporadic angiomyolipomas. Thirty angiomyolipomas from 14 patients treated with sirolimus were retrospectively evaluated. A Hounsfield-unit threshold was used to classify angiomyolipomas in fat-rich, fat-poor and intermediate-fat tumors, and to categorize tumor compartments in fat rich, fat poor, intermediate fat and highly vascularized. Diameter variations were measured to assess the effects on aneurysmatic/ectatic vascular formations. Volume reduction following treatment with sirolimus was higher in fat-poor than fat-rich angiomyolipomas. Tumor reduction was mainly determined by decrease of the fat-poor and highly-vascularized compartments while the volume of the fat-rich compartment increased. Broad liposubstitution was observed in some tumors. A median reduction of 100% (75 to 100) in the diameter of aneurysmatic/ectatic vascular structures was observed. Our study showed that sirolimus reduces the size of angiomyolipomas by decreasing primarily their highly-vascularized and fat-poor compartments. This effect is associated with a remarkable reduction of tumoral aneurysms/ectatic vessels, revealing the likely mechanism responsible for the risk-decreasing effect of mTOR inhibitors on angiomyolipoma bleeding. These findings support the role of mTOR in the development of angiomyolipoma blood vessels.


Evolution ◽  
2014 ◽  
Vol 68 (3) ◽  
pp. 901-908 ◽  
Author(s):  
Craig R. White ◽  
Roger S. Seymour

2001 ◽  
Vol 125 (1) ◽  
pp. 67-71 ◽  
Author(s):  
Mark W. Lingen

Abstract The basic signs and symptoms of inflammation and wound healing have been appreciated for thousands of years. However, the specific cells involved and their roles in this complex environment are still being elucidated today. In 1926, the origin of the phagocytic mononuclear ameboid wandering cell (macrophage) had not been determined. One popular theory was that the cells were differentiated from the endothelial cells of the nearby blood vessels, whereas others believed that the cells came from the peripheral blood or resting wandering cells. The purpose of this article is to review the seminal article published by Lang regarding this topic nearly 75 years ago. In addition, this article will review what is now known with regard to the role of the macrophage and endothelial cells in the development of angiogenesis, which is arguably the most critical component of successful inflammatory process or wound healing.


mBio ◽  
2018 ◽  
Vol 9 (6) ◽  
Author(s):  
Johanna Patricia Daily

ABSTRACT The most advanced vaccine against Plasmodium falciparum malaria, RTS,S/AS01, provides partial protection in infants and children living in areas of malaria endemicity. Further understanding its mechanisms of protection may allow the development of improved second-generation vaccines. The RTS,S/AS01 vaccine targets the sporozoites injected by mosquito vectors into the dermis which then travel into the blood stream to establish infection in the liver. Flores-Garcia et al. (Y. Flores-Garcia, G. Nasir, C. S. Hopp, C. Munoz, et al., mBio 9:e02194-18, 2018, https://doi.org/10.1128/mBio.02194-18) shed light on early protective responses occurring in the dermis in immunized animals. They demonstrated that immunization impairs sporozoite motility and entry into blood vessels. Furthermore, they established that challenge experiments performed using a dermal route conferred greater protection than intravenous challenge in immunized mice. Thus, the dermal challenge approach captures the additional protective mechanisms occurring in the dermis that reflect the natural physiology of infection. Those studies highlighted the fascinating biology of skin-stage sporozoites and provided additional insights into vaccine-induced protection.


Sign in / Sign up

Export Citation Format

Share Document