scholarly journals Integrated neural technologies: Solutions beyond tomorrow

2020 ◽  
Vol 3 (5) ◽  
pp. 1-3
Author(s):  
Wael MY Mohamed ◽  
Indranath Chatterjee ◽  
Mohammad A Kamal

Neuroscience is an exciting area in which, at a fast rate, revolutionary advances materialise.  Neurotechnology is interesting and contentious at the same time, as one of its aims is to "wire" human brains directly into computers. Neurotechnology is defined as the assembly of methods and instruments which allow a direct connection to the nervous system of technical components. These instruments are electrodes, machines or smart prostheses. They are designed to record and/or "translate" impulses from the brain into control instructions, or to modify brain function through the application of electrical or optical stimulation. The emergence of neuro-technologies is interdisciplinary. It supports the amalgamation of neurobiology with atomic, nano- and micro-sciences, as a fascinating path for significant development in the neuroscience domain. It poses a scientific foundation for potential therapeutic strategies.

2018 ◽  
Vol 94 (1114) ◽  
pp. 446-452 ◽  
Author(s):  
Borros M Arneth

BackgroundThe gut–brain axis facilitates a critical bidirectional link and communication between the brain and the gut. Recent studies have highlighted the significance of interactions in the gut–brain axis, with a particular focus on intestinal functions, the nervous system and the brain. Furthermore, researchers have examined the effects of the gut microbiome on mental health and psychiatric well-being.The present study reviewed published evidence to explore the concept of the gut–brain axis.AimsThis systematic review investigated the relationship between human brain function and the gut–brain axis.MethodsTo achieve these objectives, peer-reviewed articles on the gut–brain axis were identified in various electronic databases, including PubMed, MEDLINE, CIHAHL, Web of Science and PsycINFO.ResultsData obtained from previous studies showed that the gut–brain axis links various peripheral intestinal functions to brain centres through a broad range of processes and pathways, such as endocrine signalling and immune system activation. Researchers have found that the vagus nerve drives bidirectional communication between the various systems in the gut–brain axis. In humans, the signals are transmitted from the liminal environment to the central nervous system.ConclusionsThe communication that occurs in the gut–brain axis can alter brain function and trigger various psychiatric conditions, such as schizophrenia and depression. Thus, elucidation of the gut–brain axis is critical for the management of certain psychiatric and mental disorders.


It was in 1895 that Oliver & Schafer discovered the pressor activity of glycerol extracts of the pituitary. By 1928 it was clear that this activity, called vasopressin, was due to a peptide derived from the neural lobes of the pituitary and, in the early fifties, its structure and that of its ‘twin’, oxytocin, were determined by du Vigneaud and his colleagues, who were also able to prepare them synthetically. For a long time these two peptides, which were clearly of neural origin, were thought to have only peripheral physiological actions. However, evidence has gradually accumulated that these as well as some hormonal peptides not of neural origin, such as angiotensin and corticotrophin, could have actions on the central nervous system. The discovery of the enkephalins by Hughes & Kosterlitz in 1975 revealed the presence of an oligopeptide in the forebrain that could influence brain function and for which a specific receptor could be delineated which provided an immediate connection with the well documented non-peptide analgesic drugs of the morphine group. Within a short time discrete localization both of enkaphalin stores and of enkephalin receptors within the nervous system was demonstrated. In the ensuing period a growing number of peptides have either been isolated from the brain or have been inferred, from immunological evidence, to be present. Some of these peptides, such as insulin and gastrin, have well established peripheral biological actions, and their presence in the brain has engendered considerable surprise.


Author(s):  
Martin R. Turner ◽  
Matthew C. Kiernan ◽  
Kevin Talbot

This chapter highlights key technological advances in neuroimaging, the understanding of impulse transmission, and the molecular biology of the nervous system that have underpinned our modern understanding of the brain, mind, and nervous system. Neuroimaging spans the sub-cellular and systems levels of neuroscience, beginning with electron microscopy and then, 50 years later, magnetic resonance imaging and increasingly sophisticated mathematical modelling of brain function. These developments have been interleaved with the improved understanding of neurotransmission, starting with the seminal observations made from giant squid axon recordings, which were translated into clinically useable tools through the application of electric current, and later with magnetic stimulation. It is during the last 50 years that a molecular framework for these concepts emerged, with the cloning of genes that began in Duchenne muscular dystrophy, paving the way for the wider human genome project.


2020 ◽  
Vol 21 (23) ◽  
pp. 8899
Author(s):  
Sandor Haas-Neill ◽  
Paul Forsythe

The discovery of the microbiota-gut-brain axis has revolutionized our understanding of systemic influences on brain function and may lead to novel therapeutic approaches to neurodevelopmental and mood disorders. A parallel revolution has occurred in the field of intercellular communication, with the realization that endosomes, and other extracellular vesicles, rival the endocrine system as regulators of distant tissues. These two paradigms shifting developments come together in recent observations that bacterial membrane vesicles contribute to inter-kingdom signaling and may be an integral component of gut microbe communication with the brain. In this short review we address the current understanding of the biogenesis of bacterial membrane vesicles and the roles they play in the survival of microbes and in intra and inter-kingdom communication. We identify recent observations indicating that bacterial membrane vesicles, particularly those derived from probiotic organisms, regulate brain function. We discuss mechanisms by which bacterial membrane vesicles may influence the brain including interaction with the peripheral nervous system, and modulation of immune activity. We also review evidence suggesting that, unlike the parent organism, gut bacteria derived membrane vesicles are able to deliver cargo, including neurotransmitters, directly to the central nervous system and may thus constitute key components of the microbiota-gut-brain axis.


2016 ◽  
Vol 7 (4) ◽  
pp. 253-258 ◽  
Author(s):  
Jing Zhang ◽  
Weizhen Zhang

AbstractIrisin was initially discovered as a novel hormone-like myokine released from skeletal muscle during exercise to improve obesity and glucose dysfunction by stimulating the browning of white adipose tissue. Emerging evidence have indicated that irisin also affects brain function. FNDC5 mRNA and FNDC5/irisin immunoreactivity are present in various regions of the brain. Central irisin is involved in the regulation of neural differentiation and proliferation, neurobehavior, energy expenditure and cardiac function. Elevation of peripheral irisin level stimulates hippocampal genes related to neuroprotection, learning and memory. In this brief review, we summarize the current understanding on neuronal functions of irisin. In addition, we discuss the pros and cons for this molecule as a potential messenger mediating the crosstalk between skeletal muscle and central nervous system during exercise.


2021 ◽  
Vol 15 ◽  
Author(s):  
Xiuqi Chen ◽  
Wenmei Lu ◽  
Danhong Wu

As a type of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, sirtuin 2 (SIRT2) is predominantly found in the cytoplasm of cells in the central nervous system (CNS), suggesting its potential role in neurological disorders. Though SIRT2 is generally acknowledged to accelerate the development of neurological pathologies, it protects the brain from deterioration in certain circumstances. This review summarized the complex roles SIRT2 plays in the pathophysiology of diverse neurological disorders, compared and analyzed the discrete roles of SIRT2 in different conditions, and provided possible explanations for its paradoxical functions. In the future, the rapid growth in SIRT2 research may clarify its impacts on neurological disorders and develop therapeutic strategies targeting this protein.


2019 ◽  
Vol 3 ◽  
pp. 239821281985824 ◽  
Author(s):  
Trevor G Smart ◽  
F Anne Stephenson

γ-aminobutyric acid has become one of the most widely known neurotransmitter molecules in the brain over the last 50 years, recognised for its pivotal role in inhibiting neural excitability. It emerged from studies of crustacean muscle and neurons before its significance to the mammalian nervous system was appreciated. Now, after five decades of investigation, we know that most neurons are γ-aminobutyric-acid-sensitive, it is a cornerstone of neural physiology and dysfunction to γ-aminobutyric acid signalling is increasingly documented in a range of neurological diseases. In this review, we briefly chart the neurodevelopment of γ-aminobutyric acid and its two major receptor subtypes: the γ-aminobutyric acidA and γ-aminobutyric acidB receptors, starting from the humble invertebrate origins of being an ‘interesting molecule’ acting at a single γ-aminobutyric acid receptor type, to one of the brain’s most important neurochemical components and vital drug targets for major therapeutic classes of drugs. We document the period of molecular cloning and the explosive influence this had on the field of neuroscience and pharmacology up to the present day and the production of atomic γ-aminobutyric acidA and γ-aminobutyric acidB receptor structures. γ-Aminobutyric acid is no longer a humble molecule but the instigator of rich and powerful signalling processes that are absolutely vital for healthy brain function.


2020 ◽  
pp. 609-633
Author(s):  
Edmund T. Rolls

In this Chapter a comparison is made between computations in the brain and computations performed in computers. This is intended to be helpful to those engineers, computer scientists, AI specialists et al interested in designing new computers that emulate aspects of brain function. In fact, the whole of this book is intended to be useful for this aim, by setting out what is computed by different brain systems, and what we know about how it is computed. It is essential to know this if an emulation of brain function is to be performed, and this is important to enable this group of scientists to bring their expertise to help understand brain function more. The Chapter also considers the levels of investigation, which include the computational, necessary to understand brain function; and some applications of this understanding, to for example how our developing understanding is relevant to understanding disorders, including for example of food intake control leading to obesity. Finally, Section 19.10 makes it clear why the focus of this book is on computations in primate (and that very much includes human) brains, rather than on rodent (rat and mice) brains. It is because the systems-level organization of primate including human brains is quite different from that in rodents, in many fundamental ways that are described.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Ana I. Duarte ◽  
Paula I. Moreira ◽  
Catarina R. Oliveira

Insulin signaling in central nervous system (CNS) has emerged as a novel field of research since decreased brain insulin levels and/or signaling were associated to impaired learning, memory, and age-related neurodegenerative diseases. Thus, besides its well-known role in longevity, insulin may constitute a promising therapy against diabetes- and age-related neurodegenerative disorders. More interestingly, insulin has been also faced as the potential missing link between diabetes and aging in CNS, with Alzheimer's disease (AD) considered as the “brain-type diabetes.” In fact, brain insulin has been shown to regulate both peripheral and central glucose metabolism, neurotransmission, learning, and memory and to be neuroprotective. And a future challenge will be to unravel the complex interactions between aging and diabetes, which, we believe, will allow the development of efficient preventive and therapeutic strategies to overcome age-related diseases and to prolong human “healthy” longevity. Herewith, we aim to integrate the metabolic, neuromodulatory, and neuroprotective roles of insulin in two age-related pathologies: diabetes and AD, both in terms of intracellular signaling and potential therapeutic approach.


Author(s):  
Peggy Mason

This textbook guides the medical student, regardless of background or intended specialty, through the anatomy and function of the human nervous system. In writing specifically for medical students, the author concentrates on the neural contributions to common diseases, whether neurological or not, and omits topics without clinical relevance. The two fundamental building blocks of the nervous system are neural communication and neuroanatomy. Foundations in both topics must be mastered. After learning the neurons and glial cells that comprise the nervous system, the book begins with a study of the anatomy of the nervous system before moving on to neural communication. With these basics of neurophysiology and neuroanatomy in hand, the reader is ready to tackle how the brain “works” by examining perception, voluntary movement, and homeostasis. The book is intended as a “travel guide” to the human brain, one that communicates to the reader the profound power and beauty of brain function while providing a memorable and enjoyable trip.


Sign in / Sign up

Export Citation Format

Share Document