scholarly journals Insulin in Central Nervous System: More than Just a Peripheral Hormone

2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Ana I. Duarte ◽  
Paula I. Moreira ◽  
Catarina R. Oliveira

Insulin signaling in central nervous system (CNS) has emerged as a novel field of research since decreased brain insulin levels and/or signaling were associated to impaired learning, memory, and age-related neurodegenerative diseases. Thus, besides its well-known role in longevity, insulin may constitute a promising therapy against diabetes- and age-related neurodegenerative disorders. More interestingly, insulin has been also faced as the potential missing link between diabetes and aging in CNS, with Alzheimer's disease (AD) considered as the “brain-type diabetes.” In fact, brain insulin has been shown to regulate both peripheral and central glucose metabolism, neurotransmission, learning, and memory and to be neuroprotective. And a future challenge will be to unravel the complex interactions between aging and diabetes, which, we believe, will allow the development of efficient preventive and therapeutic strategies to overcome age-related diseases and to prolong human “healthy” longevity. Herewith, we aim to integrate the metabolic, neuromodulatory, and neuroprotective roles of insulin in two age-related pathologies: diabetes and AD, both in terms of intracellular signaling and potential therapeutic approach.

2021 ◽  
Vol 15 ◽  
Author(s):  
Xiuqi Chen ◽  
Wenmei Lu ◽  
Danhong Wu

As a type of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, sirtuin 2 (SIRT2) is predominantly found in the cytoplasm of cells in the central nervous system (CNS), suggesting its potential role in neurological disorders. Though SIRT2 is generally acknowledged to accelerate the development of neurological pathologies, it protects the brain from deterioration in certain circumstances. This review summarized the complex roles SIRT2 plays in the pathophysiology of diverse neurological disorders, compared and analyzed the discrete roles of SIRT2 in different conditions, and provided possible explanations for its paradoxical functions. In the future, the rapid growth in SIRT2 research may clarify its impacts on neurological disorders and develop therapeutic strategies targeting this protein.


2019 ◽  
Vol 20 (14) ◽  
pp. 3563 ◽  
Author(s):  
Luc Rochette ◽  
Gabriel Malka

In the brain, aging is accompanied by cellular and functional deficiencies that promote vulnerability to neurodegenerative disorders. In blood plasma from young and old animals, various factors such as growth differentiation factor 11 (GDF11), whose levels are elevated in young animals, have been identified. The blood concentrations of these factors appear to be inversely correlated with the age-related decline of neurogenesis. The identification of GDF11 as a “rejuvenating factor” opens up perspectives for the treatment of neurodegenerative diseases. As a pro-neurogenic and pro-angiogenic agent, GDF11 may constitute a basis for novel therapeutic strategies.


2015 ◽  
Vol 70 (6) ◽  
pp. 727-733
Author(s):  
Tat'yana Ivanovna Torkhovskaya ◽  
Ol'ga Vladimirovna Belova ◽  
Irina Vasil'evna Zimina ◽  
Alina Viktorovna Kryuchkova ◽  
Svetlana Nikolaevna Moskvina ◽  
...  

The review presents data on mutual influence of nervous system and thymus, realized through the neuroendocrine-immune interactions. The presence of adrenergic and peptidergic nerves in thymus creates conditions for implementation of the effect of neuropeptides secreted by them. These neuropeptides induce activation of thymus cells receptors and influence on the main processes in thymus, including T-lymphocyte maturation, cytokine and hormones production. In turn, thymus peptides and/or cytokines, controlled by them, enter the brain and exert influence on neuronal function, which creates the basis for changes of behavior and homeostasis maintenance in response to infection. Ageing and some infectious, autoimmune, neurodegenerative and cancer diseases are accompanied by distortion of interactions between thymus and central nervous system. Mechanisms of signaling pathways, which determine these interactions, are not revealed yet, and their understanding will promote the development of effective therapeutic strategies.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Edward C Koellhoffer ◽  
Diego Morales-Scheihing ◽  
John d’Aigle ◽  
Louise D McCullough

Background: Microglia, the innate immune cells of the central nervous system (CNS), are the first cellular responders to stroke. Microglia populate the brain during development and age throughout the life of the individual. With aging, microglia transition to an activated, pro-inflammatory phenotype, making them primed to respond in a malicious manner following an ischemic event. These primed microglia are the same cells that populated the brain during development but now have an altered gene expression profile due to the inflammaging environment (e.g. cell damage, inflammatory cytokine milieu). Cells, including microglia, may respond to inflammaging by altering their epigenetic landscape to ultimately result in changes in gene expression. Hypothesis: We hypothesized that epigenetic mechanisms are responsible for the changes observed in microglia gene expression with aging, and that by definition these changes are reversible. Methods: We utilized a model of heterochronic parabiosis in which young (2-3-month) and aged (18-20-month) male C57Bl/6 mice (Charles River, NIA) were surgically attached and share a common blood supply. Pairs were attached for 8 weeks. Young and aged isochronic pairs served as surgical controls. Brains were collected for immunohistochemical (IHC), Western blot, and multiplex cytokine analysis. P0.5-P3 neonatal pups were used for in vitro culture of primary microglia and were stimulated with lipopolysaccharide (LPS) and interferon-γ for 24hr. Results: We screened 10 histone modifications and found that aging causes an imbalance in the epigenetic status of the CNS, with 1.26±0.08-fold higher histone H3 lysine 27 trimethylation (H3K27me3) and 0.649±0.063-fold reduced H3K27me1 (n=3, p<0.05). Pro-inflammatory stimulation of primary microglia resulted in elevated H3K27me3 (n=3, p<0.01), suggesting this mark is central to the pro-inflammatory status of aged microglia. Heterochronic parabiosis reversed these age-related changes, with reduced H3K27me3 in the brains of aged heterochronic mice (rejuvenation) and reduced H3K27me1 in young heterochronic mice (accelerated aging) (n=3-4, p<0.05). Conclusion: We conclude that the aged CNS has an imbalanced epigenetic landscape, and that this is reversible.


Author(s):  
S.S. Spicer ◽  
B.A. Schulte

Generation of monoclonal antibodies (MAbs) against tissue antigens has yielded several (VC1.1, HNK- 1, L2, 4F4 and anti-leu 7) which recognize the unique sugar epitope, glucuronyl 3-sulfate (Glc A3- SO4). In the central nervous system, these MAbs have demonstrated Glc A3-SO4 at the surface of neurons in the cerebral cortex, the cerebellum, the retina and other widespread regions of the brain.Here we describe the distribution of Glc A3-SO4 in the peripheral nervous system as determined by immunostaining with a MAb (VC 1.1) developed against antigen in the cat visual cortex. Outside the central nervous system, immunoreactivity was observed only in peripheral terminals of selected sensory nerves conducting transduction signals for touch, hearing, balance and taste. On the glassy membrane of the sinus hair in murine nasal skin, just deep to the ringwurt, VC 1.1 delineated an intensely stained, plaque-like area (Fig. 1). This previously unrecognized structure of the nasal vibrissae presumably serves as a tactile end organ and to our knowledge is not demonstrable by means other than its selective immunopositivity with VC1.1 and its appearance as a densely fibrillar area in H&E stained sections.


2012 ◽  
Vol 13 (2) ◽  
pp. 32-42 ◽  
Author(s):  
Yvette D. Hyter

Abstract Complex trauma resulting from chronic maltreatment and prenatal alcohol exposure can significantly affect child development and academic outcomes. Children with histories of maltreatment and those with prenatal alcohol exposure exhibit remarkably similar central nervous system impairments. In this article, I will review the effects of each on the brain and discuss clinical implications for these populations of children.


2018 ◽  
Vol 23 (1) ◽  
pp. 10-13
Author(s):  
James B. Talmage ◽  
Jay Blaisdell

Abstract Injuries that affect the central nervous system (CNS) can be catastrophic because they involve the brain or spinal cord, and determining the underlying clinical cause of impairment is essential in using the AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), in part because the AMA Guides addresses neurological impairment in several chapters. Unlike the musculoskeletal chapters, Chapter 13, The Central and Peripheral Nervous System, does not use grades, grade modifiers, and a net adjustment formula; rather the chapter uses an approach that is similar to that in prior editions of the AMA Guides. The following steps can be used to perform a CNS rating: 1) evaluate all four major categories of cerebral impairment, and choose the one that is most severe; 2) rate the single most severe cerebral impairment of the four major categories; 3) rate all other impairments that are due to neurogenic problems; and 4) combine the rating of the single most severe category of cerebral impairment with the ratings of all other impairments. Because some neurological dysfunctions are rated elsewhere in the AMA Guides, Sixth Edition, the evaluator may consult Table 13-1 to verify the appropriate chapter to use.


2018 ◽  
Vol 25 (28) ◽  
pp. 3333-3352 ◽  
Author(s):  
Natalia Pessoa Rocha ◽  
Ana Cristina Simoes e Silva ◽  
Thiago Ruiz Rodrigues Prestes ◽  
Victor Feracin ◽  
Caroline Amaral Machado ◽  
...  

Background: The Renin-Angiotensin System (RAS) is a key regulator of cardiovascular and renal homeostasis, but also plays important roles in mediating physiological functions in the central nervous system (CNS). The effects of the RAS were classically described as mediated by angiotensin (Ang) II via angiotensin type 1 (AT1) receptors. However, another arm of the RAS formed by the angiotensin converting enzyme 2 (ACE2), Ang-(1-7) and the Mas receptor has been a matter of investigation due to its important physiological roles, usually counterbalancing the classical effects exerted by Ang II. Objective: We aim to provide an overview of effects elicited by the RAS, especially Ang-(1-7), in the brain. We also aim to discuss the therapeutic potential for neuropsychiatric disorders for the modulation of RAS. Method: We carried out an extensive literature search in PubMed central. Results: Within the brain, Ang-(1-7) contributes to the regulation of blood pressure by acting at regions that control cardiovascular functions. In contrast with Ang II, Ang-(1-7) improves baroreflex sensitivity and plays an inhibitory role in hypothalamic noradrenergic neurotransmission. Ang-(1-7) not only exerts effects related to blood pressure regulation, but also acts as a neuroprotective component of the RAS, for instance, by reducing cerebral infarct size, inflammation, oxidative stress and neuronal apoptosis. Conclusion: Pre-clinical evidence supports a relevant role for ACE2/Ang-(1-7)/Mas receptor axis in several neuropsychiatric conditions, including stress-related and mood disorders, cerebrovascular ischemic and hemorrhagic lesions and neurodegenerative diseases. However, very few data are available regarding the ACE2/Ang-(1-7)/Mas receptor axis in human CNS.


Author(s):  
Asfree Gwanyanya ◽  
Christie Nicole Godsmark ◽  
Roisin Kelly-Laubscher

Abstract: Ethanolamine is a bioactive molecule found in several cells, including those in the central nervous system (CNS). In the brain, ethanolamine and ethanolamine-related molecules have emerged as prodrug moieties that can promote drug movement across the blood-brain barrier. This improvement in the ability to target drugs to the brain may also mean that in the process ethanolamine concentrations in the brain are increased enough for ethanolamine to exert its own neurological ac-tions. Ethanolamine and its associated products have various positive functions ranging from cell signaling to molecular storage, and alterations in their levels have been linked to neurodegenerative conditions such as Alzheimer’s disease. This mini-review focuses on the effects of ethanolamine in the CNS and highlights the possible implications of these effects for drug design.


Sign in / Sign up

Export Citation Format

Share Document