Modeling of eddy current losses in the iron core of electrical machines by a finite element homogenization method

Author(s):  
Vương Đặng Quốc

A finite element homogenization method is proposed for the magetodynamic h-conform finite element forumulation to compute eddy current losses in electrical steel laminations. The lamination stack is served as a source region carrying predefined current density and magnetic flux density distributions presenting the eddy current losses and skin effects in each lamination. In order to solve this problem, the stacked laminations are converted into continuums with which terms are associated for considering the eddy current loops produced by both parallel and perpendicular fluxes. An accurate model of accuracy is developed via an accurate analytical expression of the eddy currents and makes the method adapted to both low and high frequency effects to capture skin depths of fields along thicknesses of the laminations.

Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1096 ◽  
Author(s):  
Mohamed Nabil Fathy Ibrahim ◽  
Peter Sergeant

The direct coil cooling method is one of the existing cooling techniques for electric machines with concentrated windings, in which cooling tubes of conductive material are inserted between the windings. In such cases, eddy current losses are induced in those cooling tubes because of the time variant magnetic field. To compute the cooling tubes losses, either a transient finite element simulation (mostly based on commercial software), or a full analytical method, which is more complex to be constructed, is required. Instead, this paper proposes a simple and an accurate combined semi-analytical-finite element method to calculate the losses of electric machines having cooling tubes. The 2D magnetostatic solution of the magnetic field is obtained e.g., using the free package “FEMM”. Then, the eddy current losses in the tubes are computed using simple analytical equations. In addition, the iron core losses could be obtained. In order to validate the proposed method, two cases are investigated. In Case 1, a six-toothed stator of a switched reluctance machine (SRM), without rotor, is employed in which six cooling tubes are used while in Case 2 a complete rotating SRM is studied. The proposed method is validated by a 2D transient simulation in the commercial software “ANSYS Maxwell” and also by experimental measurements. Evidently, the proposed method is simple and fast to be constructed and it is almost free of cost.


2014 ◽  
Vol 63 (1) ◽  
pp. 107-114
Author(s):  
Dariusz Koteras

Abstract The results of the eddy currents losses calculations with using electrodynamics scaling were presented in this paper. Scaling rules were used for obtain the values of the eddy currents losses. For the calculations Finite Element Method was used. Numerical calculations were verified by measurements and a good agreement was obtained


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2808
Author(s):  
Duo Teng ◽  
Yatian Li

An appropriate magnetic design helps ensure that the Terfenol-D (Terbium- Dysprosium-Iron alloy) rods in giant magnetostrictive transducers have the perfect magnetostriction ability. To determine the optimum Terfenol-D rod state, a segmented stack configuration comprised by the Terfenol-D rods and NdFeB (neodymium-iron-boron) permanent magnets is presented. The bias magnetic field distributions simulated through the finite element method indicate that the segmented stack configuration is one effective way to produce the desired bias magnetic field. Particularly for long stacks, establishing a majority of domain to satisfy the desired bias magnetic field range is feasible. On the other hand, the eddy current losses of Terfenol-D rods are also the crucial to their magnetostriction ability. To reduce eddy current losses, the configuration with digital slots in the Terfenol-D rods is presented. The induced eddy currents and the losses are estimated. The simulations reveal that the digital slots configuration decreases the eddy current losses by 78.5% compared to the same size Terfenol-D rod with only a hole. A Terfenol-D transducer prototype has been manufactured using a Terfenol-D rod with a mechanical prestress of about 10 MPa and a bias magnetic field of about 42 kA/m. Its maximum transmitting current response of 185.4 dB at 3.75 kHz indicates its practicability for application as an underwater projector.


2011 ◽  
Vol 383-390 ◽  
pp. 7521-7525
Author(s):  
Yue Jun An ◽  
Guo Ming Liu ◽  
Hong Liang Wen ◽  
Wen Qiang Zhao ◽  
Li Ping Xue ◽  
...  

Induced eddy currents in can cause loss when the canned motor runs, the loss make the motor`s temperature rise, directly affect the canned motor pump and the entire transmission system security. Empirical formula estimates eddy current losses which has a big error, it is difficult to meet the engineering requirements. For the canned motor with Hastelloy-C alloy or Sus316L cans, analyzed electromagnetic field and calculated can loss using a finite element method of Ansoft. The paper developed four prototypes, and obtained the experimental value of can loss via simple no-load experiment by the loss separation method. The results are compared with simulation value show that the accuracy of FEM is higher accurately than empirical formula; Analysis shows that dimension of a model and can material characteristic parameters such as the resistivity influence on the calculated error of FEM, the paper proposes to correct the error in the case of considering can material characteristic parameters.


Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 897-901
Author(s):  
Andrzej Waindok ◽  
Bronislaw Tomczuk

AbstractField analysis including eddy currents in the magnetic core of five-phase permanent magnet tubular linear actuator (TLA) has been carried out. The eddy currents induced in the magnetic core cause the losses which have been calculated. The results from 2D finite element (FE) analysis have been compared with those from 3D calculations. The losses in the mover of the five-phase actuator are much lower than the losses in its stator. That is why the former ones can be neglected in the computer aided designing. The calculation results have been verified experimentally


2020 ◽  
pp. 54-58
Author(s):  
S. M. Plotnikov

The division of the total core losses in the electrical steel of the magnetic circuit into two components – losses dueto hysteresis and eddy currents – is a serious technical problem, the solution of which will effectively design and construct electrical machines with magnetic circuits having low magnetic losses. In this regard, an important parameter is the exponent α, with which the frequency of magnetization reversal is included in the total losses in steel. Theoretically, this indicator can take values from 1 to 2. Most authors take α equal to 1.3, which corresponds to the special case when the eddy current losses are three times higher than the hysteresis losses. In fact, for modern electrical steels, the opposite is true. To refine the index α, an attempt was made to separate the total core losses on the basis that the hysteresis component is proportional to the first degree of the magnetization reversal frequency, and the eddy current component is proportional to the second degree. In the article, the calculation formulas of these components are obtained, containing the values of the total losses measured in idling experiments at two different frequencies, and the ratio of these frequencies. It is shown that the rational frequency ratio is within 1.2. Presented the graphs and expressions to determine the exponent α depending on the measured no-load losses and the frequency of magnetization reversal.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yating Yu ◽  
Fei Yuan ◽  
Hanchao Li ◽  
Cristian Ulianov ◽  
Guiyun Tian

Concentrated stresses and residual ones are critical for the metal structures’ health, because they can cause microcracks that require emergency maintenance or can result in potential accidents. Therefore, an accurate approach to the measurement of stresses is key for ensuring the health of metal structures. The eddy current technique is an effective approach to detect the stress according to the piezoresistive effect. However, it is limited to detect the surface stress due to the skin effect. In engineering, the stress distribution is inhomogeneous; therefore, to predict the inhomogeneous stress distribution, this paper proposes a nondestructive approach which combines the eddy current technique and finite element (FE) method. The experimental data achieved through the eddy current technique determines the relationship between the applied force and the magnetic flux density, while numerical simulations through the FE method bridge the relationship between the magnetic flux density and the stress distribution in different directions. Therefore, we can predict the inhomogeneous stress nondestructively. As a case study, the applied stress in a three-point-bending simply supported beam was evaluated, and the relative error is less than 8% in the whole beam. This approach can be expected to predict the residual stress in metal structures, such as rail and vehicle structures, if the stress distribution pattern is known.


Author(s):  
Karl Hollaus

Purpose The simulation of eddy currents in laminated iron cores by the finite element method (FEM) is of great interest in the design of electrical devices. Modeling each laminate by finite elements leads to extremely large nonlinear systems of equations impossible to solve with present computer resources reasonably. The purpose of this study is to show that the multiscale finite element method (MSFEM) overcomes this difficulty. Design/methodology/approach A new MSFEM approach for eddy currents of laminated nonlinear iron cores in three dimensions based on the magnetic vector potential is presented. How to construct the MSFEM approach in principal is shown. The MSFEM with the Biot–Savart field in the frequency domain, a higher-order approach, the time stepping method and with the harmonic balance method are introduced and studied. Findings Various simulations demonstrate the feasibility, efficiency and versatility of the new MSFEM. Originality/value The novel MSFEM solves true three-dimensional eddy current problems in laminated iron cores taking into account of the edge effect.


Author(s):  
C.H.H.M. Custers ◽  
J.W. Jansen ◽  
M.C. van Beurden ◽  
E.A. Lomonova

PurposeThe purpose of this paper is to describe a semi-analytical modeling technique to predict eddy currents in three-dimensional (3D) conducting structures with finite dimensions. Using the developed method, power losses and parasitic forces that result from eddy current distributions can be computed.Design/methodology/approachIn conducting regions, the Fourier-based solutions are developed to include a spatially dependent conductivity in the expressions of electromagnetic quantities. To validate the method, it is applied to an electromagnetic configuration and the results are compared to finite element results.FindingsThe method shows good agreement with the finite element method for a large range of frequencies. The convergence of the presented model is analyzed.Research limitations/implicationsBecause of the Fourier series basis of the solution, the results depend on the considered number of harmonics. When conducting structures are small with respect to the spatial period, the number of harmonics has to be relatively large.Practical implicationsBecause of the general form of the solutions, the technique can be applied to a wide range of electromagnetic configurations to predict, e.g. eddy current losses in magnets or wireless energy transfer systems. By adaptation of the conductivity function in conducting regions, eddy current distributions in structures containing holes or slit patterns can be obtained.Originality/valueWith the presented technique, eddy currents in conducting structures of finite dimensions can be modeled. The semi-analytical model is for a relatively low number of harmonics computationally faster than 3D finite element methods. The method has been validated and shown to be computationally accurate.


Sign in / Sign up

Export Citation Format

Share Document