scholarly journals Promotion of root elongation by pyridinecarboxylic acids known as novel cut flower care agents

Plant Root ◽  
2017 ◽  
Vol 11 (0) ◽  
pp. 40-47 ◽  
Author(s):  
Shigeru Satoh ◽  
Yoshihiro Nomura
HortScience ◽  
1990 ◽  
Vol 25 (11) ◽  
pp. 1357F-1358
Author(s):  
Yiran Yu ◽  
James Harding ◽  
Thomas Byrne

Genetic components of variance and heritability of flowering time were estimated for five generations of the Davis Populationof Gerbera hybrids, Composite, Estimates of narrow-sense heritability averaged 0.50 and broad-sense heritability averaged 0.77 using the NCII design. Narrow-sense heritability was also estimated with two models of parent-offspring regression, resulting in average heritability of 0.49 and 0.51. Estimates of components of variance indicated that the major genetic effect controlling flowering time is additive. However, the dominance component accounted for 28% of the total variance; the environmental component was only 23%. Flowering time is negatively correlated with cut-flower yield. The phenotypic coefficient was –0.34; genetic correlations were –0.47 when estimated from the NCII design, and –0.72 when estimated from the parent-off-spring method. A practical model was constructed to assess the efficiency of indirect selection for cut-flower yield using flowering time as a marker trait. The advantages of indirect selection accruing from increased population size and reduced generation time are discussed.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 508b-508
Author(s):  
Pamela M. Lewis ◽  
Alan M. Armitage ◽  
Jim M. Garner

The effect of vernalization method and duration on off-season cut flower production of Lysimachia clethroides Duby was examined. Rhizomes harvested in October were cooled for 0, 4, 6, 8, 10 or 12 weeks at 4 ± 1 °C in crates with unmilled sphagnum peat or in 3.75-L pots with potting media prior to forcing in a warm greenhouse. After 6 or more weeks of cooling, shoots emerged from crate-cooled rhizomes in higher percentages than from pot-cooled rhizomes. However, only the duration of cooling, not the method, affected the rate of shoot emergence, visible bud formation and anthesis of the first bud in the raceme. As cooling increased from 0 to 12 weeks, the greenhouse days required for shoot emergence, visible bud formation and anthesis decreased linearly. The number of flowering flushes and flowering stems varied quadratically with cooling duration, and the highest yields occurred when rhizomes received between 4 and 10 weeks of cooling. As the number of successive flowering flushes increased, the stem length increased linearly while the stem diameter decreased linearly. High numbers of flowers were produced rapidly after 10 weeks of cooling.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 531a-531 ◽  
Author(s):  
Robin G. Brumfield ◽  
Burhan Ozkan ◽  
Osman Karagüzel

Thirty cut flower businesses were surveyed in 1997 to examine the production structure and main problems of export-oriented contract growing in Turkey. The survey was conducted in Antalya province, which is the center of export-oriented cut flower production in Turkey. The results of the research provided insight into how Turkish cut flower-contracted growers were managing some of the key areas of their operations. The study also provided the opportunity for growers to highlight their concerns about contract growing for export-oriented cut flower production. The survey showed that contract growers do not use specific performance indicators relevant to cut flower production. The product price received by the contract growers was determined by the export companies. These export companies receive flowers from growers mainly on consignment. After exporting the products, exporters periodically pay the grower, subtracting a commission for their services and other marketing expenses. Contract growers are essentially price takers in the transactions. The business procedure from production to price setting and marketing was not in the hands of the contract growers. Therefore, the trading risks are essentially borne by the contract growers. The main concerns raised by contract growers were the current consignment system, cost of the plant materials, and the late payment for the sold products.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 479d-479
Author(s):  
Michael Knee ◽  
Ruth Brake

In urban situations, particularly after construction, herbaceous ornamentals may be planted into soils that are compacted or have poor structure so that plant roots may encounter poor aeration or physical resistance. Low oxygen concentrations may be the most important aspect of poor aeration and are readily reproduced in the laboratory. High atmospheric pressure might be used to screen for the ability to grow against physical resistance. We tested the suggestion that “native” plants would grow better in compacted soils than typical bedding plants and for differences in tolerance to low oxygen or high pressure. Plants were grown from seed in the greenhouse at four levels of compaction in peat-based medium and in field soil. Shoot dry weights of the native plants Asclepias tuberosa, Echinacea purpurea, and Schizachyrium scoparius, were less affected by growth in compacted soil or peat medium than those of the bedding plants, Antirrhinum majus, Gypsophila elegans, Impatiens balsamina, Tagetes patula and Zinnia elegans. The oxygen content of media declined with compaction to a minimum of 10 kPa. Half maximal root elongation was observed at 1 to 3 kPa oxygen for most species without any separation between the groups. A presure of 1100 kPa reduced root elongation of the bedding plants by 50 to 70% but only 5 to 20% for the native plants.


Crop Science ◽  
2011 ◽  
Vol 51 (1) ◽  
pp. 157-172 ◽  
Author(s):  
Kristen A. Leach ◽  
Lindsey G. Hejlek ◽  
Leonard B. Hearne ◽  
Henry T. Nguyen ◽  
Robert E. Sharp ◽  
...  

2021 ◽  
Vol 138 ◽  
pp. 415-423
Author(s):  
M. Bayanati ◽  
E. Ahmadinejad ◽  
F. Kazemi ◽  
H. Rahnama ◽  
Z. Mohamadnia ◽  
...  

Planta ◽  
2021 ◽  
Vol 254 (1) ◽  
Author(s):  
Bipin K. Pandey ◽  
Lokesh Verma ◽  
Ankita Prusty ◽  
Ajit Pal Singh ◽  
Malcolm J. Bennett ◽  
...  

Abstract Main conclusion OsJAZ11 regulates phosphate homeostasis by suppressing jasmonic acid signaling and biosynthesis in rice roots. Abstract Jasmonic Acid (JA) is a key plant signaling molecule which negatively regulates growth processes including root elongation. JAZ (JASMONATE ZIM-DOMAIN) proteins function as transcriptional repressors of JA signaling. Therefore, targeting JA signaling by deploying JAZ repressors may enhance root length in crops. In this study, we overexpressed JAZ repressor OsJAZ11 in rice to alleviate the root growth inhibitory action of JA. OsJAZ11 is a low phosphate (Pi) responsive gene which is transcriptionally regulated by OsPHR2. We report that OsJAZ11 overexpression promoted primary and seminal root elongation which enhanced Pi foraging. Expression studies revealed that overexpression of OsJAZ11 also reduced Pi starvation response (PSR) under Pi limiting conditions. Moreover, OsJAZ11 overexpression also suppressed JA signaling and biosynthesis as compared to wild type (WT). We further demonstrated that the C-terminal region of OsJAZ11 was crucial for stimulating root elongation in overexpression lines. Rice transgenics overexpressing truncated OsJAZ11ΔC transgene (i.e., missing C-terminal region) exhibited reduced root length and Pi uptake. Interestingly, OsJAZ11 also regulates Pi homeostasis via physical interaction with a key Pi sensing protein, OsSPX1. Our study highlights the functional connections between JA and Pi signaling and reveals JAZ repressors as a promising candidate for improving low Pi tolerance of elite rice genotypes.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 249
Author(s):  
Weimiao Liu ◽  
Liai Xu ◽  
Hui Lin ◽  
Jiashu Cao

The growth of plant cells is inseparable from relaxation and expansion of cell walls. Expansins are a class of cell wall binding proteins, which play important roles in the relaxation of cell walls. Although there are many members in expansin gene family, the functions of most expansin genes in plant growth and development are still poorly understood. In this study, the functions of two expansin genes, AtEXPA4 and AtEXPB5 were characterized in Arabidopsis thaliana. AtEXPA4 and AtEXPB5 displayed consistent expression patterns in mature pollen grains and pollen tubes, but AtEXPA4 also showed a high expression level in primary roots. Two single mutants, atexpa4 and atexpb5, showed normal reproductive development, whereas atexpa4atexpb5 double mutant was defective in pollen tube growth. Moreover, AtEXPA4 overexpression enhanced primary root elongation, on the contrary, knocking out AtEXPA4 made the growth of primary root slower. Our results indicated that AtEXPA4 and AtEXPB5 were redundantly involved in pollen tube growth and AtEXPA4 was required for primary root elongation.


Sign in / Sign up

Export Citation Format

Share Document