scholarly journals Mineralization of Organic Residues, Dynamics of Microbial Biomass and Enzyme Activities in an Aridisol and Alfisol Soil under Rain-Fed Dry Farming

2018 ◽  
Vol 1 (1) ◽  
pp. 25-36
Author(s):  
Rehmat Ullah ◽  
Shehzada Munawar Mehdi ◽  
Khalid Saif Ullah Khan ◽  
Aftab Ahmed Sheikh ◽  
Endang Sulistyowati ◽  
...  

This study was planned with hypothesis to quantify mineralization rate of wheat and groundnut straw spiked in Kahuta and Guliana soil series. Results revealed that groundnut and wheat strawspiked soils had increased quantum of microbial biomass carbon (Cmic), biomass nitrogen (Nmic) and biomass phosphorous (Pmic) and activities of enzyme dehydrogenase (DHA) and alkaline phosphatase (APA) than un-amended soils. Initially, the contents of soil Cmic, Nmic, Pmic, DHA, and APA increased gradually during 2-14th days of incubation (DAI), again increased significantly at 28th DAI and then decreased slowly at 60th DAI in all treatments under both series. Hence, the addition of groundnut straw mineralized better than to other organic sources in both soil series.  These results suggested that groundnut straw must be incorporated in soil one month before sowing of crop to enhance crop yield under rain-fed dry farming.Key words: Crop Residues, Microbial Biomass, Soil Enzymes, Aridisol, Alfisols

2018 ◽  
Vol 1 (1) ◽  
pp. 25-36
Author(s):  
Rehmat Ullah ◽  
Shehzada Munawar Mehdi ◽  
Khalid Saif Ullah Khan ◽  
Aftab Ahmed Sheikh ◽  
Endang Sulistyowati ◽  
...  

This study was planned with hypothesis to quantify mineralization rate of wheat and groundnut straw spiked in Kahuta and Guliana soil series. Results revealed that groundnut and wheat strawspiked soils had increased quantum of microbial biomass carbon (Cmic), biomass nitrogen (Nmic) and biomass phosphorous (Pmic) and activities of enzyme dehydrogenase (DHA) and alkaline phosphatase (APA) than un-amended soils. Initially, the contents of soil Cmic, Nmic, Pmic, DHA, and APA increased gradually during 2-14th days of incubation (DAI), again increased significantly at 28th DAI and then decreased slowly at 60th DAI in all treatments under both series. Hence, the addition of groundnut straw mineralized better than to other organic sources in both soil series.  These results suggested that groundnut straw must be incorporated in soil one month before sowing of crop to enhance crop yield under rain-fed dry farming.Key words: Crop Residues, Microbial Biomass, Soil Enzymes, Aridisol, Alfisols


2018 ◽  
Vol 1 (1) ◽  
pp. 25-36
Author(s):  
Rehmat Ullah ◽  
Shehzada Munawar Mehdi ◽  
Khalid Saif Ullah Khan ◽  
Aftab Ahmed Sheikh ◽  
Endang Sulistyowati ◽  
...  

This study was planned with hypothesis to quantify mineralization rate of wheat and groundnut straw spiked in Kahuta and Guliana soil series. Results revealed that groundnut and wheat strawspiked soils had increased quantum of microbial biomass carbon (Cmic), biomass nitrogen (Nmic) and biomass phosphorous (Pmic) and activities of enzyme dehydrogenase (DHA) and alkaline phosphatase (APA) than un-amended soils. Initially, the contents of soil Cmic, Nmic, Pmic, DHA, and APA increased gradually during 2-14th days of incubation (DAI), again increased significantly at 28th DAI and then decreased slowly at 60th DAI in all treatments under both series. Hence, the addition of groundnut straw mineralized better than to other organic sources in both soil series.  These results suggested that groundnut straw must be incorporated in soil one month before sowing of crop to enhance crop yield under rain-fed dry farming.Key words: Crop Residues, Microbial Biomass, Soil Enzymes, Aridisol, Alfisols


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Urvashi Tomar ◽  
Ratul Baishya

Abstract Soil respiration, soil enzymes, and microbial biomass are important in carbon cycling in the terrestrial ecosystem which is generally limited by environmental factors and soil carbon availability. Hence, we tried to assess the factors affecting the functional aspects of these processes in a semi-arid climate. We monitored soil respiration (surface) using a portable infrared gas analyzer (Q-Box SR1LP Soil Respiration Package, Qubit Systems, Canada) equipped with a soil respiration chamber (Model: G 180). Soil respiration was measured at midday during each season throughout the study period. Soil enzymatic activities and microbial biomass carbon (MBC) were analyzed following the standard protocol for a year during peak time in four seasons at 0–10 cm and 10–20 cm depth. Soil respiration shows significant variation with highest in monsoon (3.31 μmol CO2 m−2 s−1) and lowest in winter (0.57 μmol CO2 m−2 s−1). Similarly, β-glucosidase, dehydrogenase, and phenol oxidase activity ranged from 11.15 to 212.59 μg PNP g−1 DW h−1, 0.11 to 16.47 μg TPF g−1 DW h−1, and 4102.95 to 10187.55 μmol ABTS+ g−1 DW min−1, respectively. MBC ranged from 17.08 to 484.5 μg C g−1. Besides, soil respiration, soil enzymes (except β-glucosidase), and MBC were significantly correlated with soil moisture. Seasonality, optimum moisture and temperature played a significant role in determining variations in soil microbiological processes (except β-glucosidase activity); the carbon cycling in the study area is assisted by enzyme activity; dehydrogenase and phenol oxidase played a significant role in soil respiration; hence, this landscape is sensitive to environmental changes.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Marta M. Moreno ◽  
Carmen Moreno ◽  
Carlos Lacasta ◽  
Ramón Meco

In organic farming, crop fertilization is largely based on the decomposition of organic matter and biological fixation of nutrients. It is therefore necessary to develop studies conducted to know and understand the soil biological processes for the natural nutrient supplies. The effect of three fertilizer managements (chemical with synthetic fertilizers, organic with 2500 kg compost ha−1, and no fertilizer) in a rainfed crop rotation (durum wheat-fallow-barley-vetch as green manure) on different soil biochemical parameters in semi-arid conditions was investigated. Soil organic matter, microbial biomass carbon, organic matter mineralization, CO2production-to-ATP ratio, and NO3-N content were analysed. Fertilization was only applied to cereals. The results showed the scarce effect of the organic fertilization on soil quality, which resulted more dependent on weather conditions. Only soil organic matter and NO3-N were affected by fertilization (significantly higher in the inorganic treatment, 1.28 g 100 g−1and 17.3 ppm, resp.). Soil organic matter was maintained throughout the study period by the inclusion of a legume in the cropping system and the burying of crop residues. In fallow, soil microbial biomass carbon increased considerably (816 ng g−1), and NO3-N at the end of this period was around 35 ppm, equivalent to 100 kg N ha−1.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 669
Author(s):  
Bipin Kumar ◽  
Shiva Dhar ◽  
Sangeeta Paul ◽  
Venkatesh Paramesh ◽  
Anchal Dass ◽  
...  

Intensive mono-cropping without a balanced supply of nutrients and declining water resources are degrading soil health, and as a consequence, agriculture production is becoming unsustainable and causing environmental degradation. The field experiment was conducted during Rabi season to assess the effect of an irrigation schedule, nutrient management, and wheat (Triticum aestivum L.) varieties on soil microbial biomass carbon (SMBC) and soil enzymes activities. Two nutrient levels, recommended rate of chemical fertilizer (RDF) and 50% RDF + 50% recommended dose of nitrogen (RDN) through farmyard manure (FYM) designated as Integrated Nutrient Sources (INS), and three irrigations levels, one irrigation at crown root initiation (CRI), two irrigations at CRI and flowering stages, and five irrigations at all main stages of the crop (CRI, tillering, jointing, flowering, and grain filling) were allocated to main-plots while four varieties of wheat, HD 2967, WR 544, HD 2987, and HD 2932, were allocated to sub-plots. The results revealed that SMBC and activities of dehydrogenase, alkaline phosphatase enzymes, and acid phosphatase were higher under restricted irrigation (irrigation at CRI stage) than other irrigation schedules. SMBC, dehydrogenase, acid phosphatase, and alkaline phosphatase activities were 73.0 µg g soil−1, 86.0 µg TPF g soil−1d−1, 39.6 µg PNP g soil−1 h1, and 81.8 µg PNP g−1 soil h−1, respectively, with the use of INS that was higher than RDF. Root weight and root volume followed a similar pattern. Applying single irrigation at CRI left behind the maximum available nitrogen (166.4 kg ha−1) in soil compared to other irrigation schedules and it was highest (149.31 kg ha−1) with the use of INS. Moreover, total organic carbon (TOC) was 0.44 and 0.43% higher with irrigation at CRI stages and the use of INS, respectively. The INS with single irrigation at the CRI stage is important to improve the root growth, SMBC dehydrogenase, alkaline phosphatase, and acid phosphatase enzyme activity in the wheat production system.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 684
Author(s):  
Mengke Cai ◽  
Shiping Xing ◽  
Xiaoqing Cheng ◽  
Li Liu ◽  
Xinhao Peng ◽  
...  

The stoichiometric ratios of elements in microorganisms play an important role in biogeochemical cycling and evaluating the nutritional limits of microbial growth, but the effects of thinning treatment on the stoichiometric ratio of carbon, nitrogen, and phosphorus in microorganisms remain unclear. We conducted research in a Larix principis-rupprechtti Mayr. plantation to determine the main factors driving microbial carbon (C): nitrogen (N): phosphorus (P) stoichiometry following thinning and the underlying mechanisms of these effects. The plantation study varied in thinning intensity from 0% tree removal (control), 15% tree reduction (high density plantation, HDP), 35% tree reduction (medium density plantation, MDP), and 50% tree reduction (low density plantation, LDP). Our results indicated that medium density plantation significantly increased litter layer biomass, soil temperature, and other soil properties (e.g., soil moisture and nutrient contents). Understory vegetation diversity (i.e., shrub layer and herb layer) was highest in the medium density plantation. Meanwhile, thinning had a great influence on the biomass of microbial communities. For example, the concentration of phospholipid fatty acids (PLFA) for bacteria and fungi in the medium density plantation (MDP) was significantly higher than in other thinning treatments. Combining Pearson correlation analysis, regression modeling, and stepwise regression demonstrated that the alteration of the microbial biomass carbon: nitrogen was primarily related to gram-positive bacteria, gram-negative bacteria, soil temperature, and soil available phosphorus. Variation in bacteria, actinomycetes, gram-positive bacteria, gram–negative bacteria, and soil total phosphorus was primarily associated with shifts in microbial biomass carbon: phosphorus. Moreover, changes in microbial biomass nitrogen: phosphorus were regulated by actinomycetes, gram-negative bacteria, and soil temperature. In conclusion, our research indicates that the stoichiometric ratios of elements in microorganisms could be influenced by thinning management, and emphasizes the importance of soil factors and microbial communities in driving soil microbial stoichiometry.


Sign in / Sign up

Export Citation Format

Share Document