Effect of Integrated Nutrient Management on Soil Enzymes, Microbial Biomass Carbon and Soil Chemical Properties after Eight Years of Rice (Oryza sativa) Cultivation in an Aeric Endoaquept

2015 ◽  
Vol 63 (4) ◽  
pp. 406 ◽  
Author(s):  
D.J. Nath ◽  
D. Gogoi ◽  
S. Buragohain ◽  
A. Gayan ◽  
Y.B. Devi ◽  
...  
Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 669
Author(s):  
Bipin Kumar ◽  
Shiva Dhar ◽  
Sangeeta Paul ◽  
Venkatesh Paramesh ◽  
Anchal Dass ◽  
...  

Intensive mono-cropping without a balanced supply of nutrients and declining water resources are degrading soil health, and as a consequence, agriculture production is becoming unsustainable and causing environmental degradation. The field experiment was conducted during Rabi season to assess the effect of an irrigation schedule, nutrient management, and wheat (Triticum aestivum L.) varieties on soil microbial biomass carbon (SMBC) and soil enzymes activities. Two nutrient levels, recommended rate of chemical fertilizer (RDF) and 50% RDF + 50% recommended dose of nitrogen (RDN) through farmyard manure (FYM) designated as Integrated Nutrient Sources (INS), and three irrigations levels, one irrigation at crown root initiation (CRI), two irrigations at CRI and flowering stages, and five irrigations at all main stages of the crop (CRI, tillering, jointing, flowering, and grain filling) were allocated to main-plots while four varieties of wheat, HD 2967, WR 544, HD 2987, and HD 2932, were allocated to sub-plots. The results revealed that SMBC and activities of dehydrogenase, alkaline phosphatase enzymes, and acid phosphatase were higher under restricted irrigation (irrigation at CRI stage) than other irrigation schedules. SMBC, dehydrogenase, acid phosphatase, and alkaline phosphatase activities were 73.0 µg g soil−1, 86.0 µg TPF g soil−1d−1, 39.6 µg PNP g soil−1 h1, and 81.8 µg PNP g−1 soil h−1, respectively, with the use of INS that was higher than RDF. Root weight and root volume followed a similar pattern. Applying single irrigation at CRI left behind the maximum available nitrogen (166.4 kg ha−1) in soil compared to other irrigation schedules and it was highest (149.31 kg ha−1) with the use of INS. Moreover, total organic carbon (TOC) was 0.44 and 0.43% higher with irrigation at CRI stages and the use of INS, respectively. The INS with single irrigation at the CRI stage is important to improve the root growth, SMBC dehydrogenase, alkaline phosphatase, and acid phosphatase enzyme activity in the wheat production system.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8531 ◽  
Author(s):  
Yulu Zhang ◽  
Dong Cui ◽  
Haijun Yang ◽  
Nijat Kasim

Background A wetland is a special ecosystem formed by the interaction of land and water. The moisture content variation will greatly affect the function and structure of the wetland internal system. Method In this paper, three kinds of wetlands with different flooding levels (Phragmites australis wetland (long-term flooding), Calamagrostis epigeios wetland(seasonal flooding) and Ditch millet wetland (rarely flooded)) in Ili Valley of Xinjiang China were selected as research areas. The changes of microbial biomass carbon, soil physical and chemical properties in wetlands were compared, and redundancy analysis was used to analyze the correlation between soil physical and chemical properties, microbial biomass carbon and enzyme activities (soil sucrase, catalase, amylase and urease). The differences of soil enzyme activities and its influencing factors under different flooding conditions in Ili Valley were studied and discussed. Result The results of this study were the following: (1) The activities of sucrase and amylase in rarely flooded wetlands and seasonally flooded wetlands were significantly higher than those in long-term flooded wetlands; the difference of catalase activity in seasonal flooded wetland was significant and the highest. (2) Redundancy analysis showed that soil organic carbon, dissolved organic carbon, total phosphorus and soil microbial biomass carbon had significant effects on soil enzyme activity (p < 0.05). (3) The correlation between soil organic carbon and the sucrase activity, total phosphorus and the catalase activity was the strongest; while soil organic carbon has a significant positive correlation with invertase, urease and amylase activity, with a slight influence on catalase activity. The results of this study showed that the content of organic carbon, total phosphorus and other soil fertility factors in the soil would be increased and the enzyme activity would be enhanced if the flooding degree was changed properly.


2018 ◽  
Vol 1 (1) ◽  
pp. 25-36
Author(s):  
Rehmat Ullah ◽  
Shehzada Munawar Mehdi ◽  
Khalid Saif Ullah Khan ◽  
Aftab Ahmed Sheikh ◽  
Endang Sulistyowati ◽  
...  

This study was planned with hypothesis to quantify mineralization rate of wheat and groundnut straw spiked in Kahuta and Guliana soil series. Results revealed that groundnut and wheat strawspiked soils had increased quantum of microbial biomass carbon (Cmic), biomass nitrogen (Nmic) and biomass phosphorous (Pmic) and activities of enzyme dehydrogenase (DHA) and alkaline phosphatase (APA) than un-amended soils. Initially, the contents of soil Cmic, Nmic, Pmic, DHA, and APA increased gradually during 2-14th days of incubation (DAI), again increased significantly at 28th DAI and then decreased slowly at 60th DAI in all treatments under both series. Hence, the addition of groundnut straw mineralized better than to other organic sources in both soil series.  These results suggested that groundnut straw must be incorporated in soil one month before sowing of crop to enhance crop yield under rain-fed dry farming.Key words: Crop Residues, Microbial Biomass, Soil Enzymes, Aridisol, Alfisols


2018 ◽  
Vol 36 (0) ◽  
Author(s):  
Lj. ŠANTRIC ◽  
Lj. RADIVOJEVIC ◽  
J. GAJIC-UMILJENDIC ◽  
M. SARIC-KRSMANOVIC ◽  
R. ÐUROVIC-PEJCEV

ABSTRACT: The effects of the nicosulfuron and glyphosate herbicides on microbial activity in two soils with different physical and chemical properties (loam and sand) were investigated. Nicosulfuron was applied at the rates of 0.3, 0.6, 3.0 and 30.0 mg kg-1 soil and glyphosate at 32.6, 65.2, 326.0 and 3260.0 mg kg-1 soil in the laboratory. Changes in dehydrogenase and urease activity, as well as in microbial biomass carbon, were examined. Samples for the analysis were collected at 3, 7, 14, 30 and 45 days after herbicide application. The results showed that the effects of nicosulfuron and glyphosate depended on treatment rate, duration of activity, test parameters and soil types. In general, application of the herbicides significantly increased the activity of dehydrogenase and urease. Nicosulfuron had a stimulating activity on microbial biomass carbon in loam, while both herbicides demonstrated negative effects on the parameter in the sandy soil.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Urvashi Tomar ◽  
Ratul Baishya

Abstract Soil respiration, soil enzymes, and microbial biomass are important in carbon cycling in the terrestrial ecosystem which is generally limited by environmental factors and soil carbon availability. Hence, we tried to assess the factors affecting the functional aspects of these processes in a semi-arid climate. We monitored soil respiration (surface) using a portable infrared gas analyzer (Q-Box SR1LP Soil Respiration Package, Qubit Systems, Canada) equipped with a soil respiration chamber (Model: G 180). Soil respiration was measured at midday during each season throughout the study period. Soil enzymatic activities and microbial biomass carbon (MBC) were analyzed following the standard protocol for a year during peak time in four seasons at 0–10 cm and 10–20 cm depth. Soil respiration shows significant variation with highest in monsoon (3.31 μmol CO2 m−2 s−1) and lowest in winter (0.57 μmol CO2 m−2 s−1). Similarly, β-glucosidase, dehydrogenase, and phenol oxidase activity ranged from 11.15 to 212.59 μg PNP g−1 DW h−1, 0.11 to 16.47 μg TPF g−1 DW h−1, and 4102.95 to 10187.55 μmol ABTS+ g−1 DW min−1, respectively. MBC ranged from 17.08 to 484.5 μg C g−1. Besides, soil respiration, soil enzymes (except β-glucosidase), and MBC were significantly correlated with soil moisture. Seasonality, optimum moisture and temperature played a significant role in determining variations in soil microbiological processes (except β-glucosidase activity); the carbon cycling in the study area is assisted by enzyme activity; dehydrogenase and phenol oxidase played a significant role in soil respiration; hence, this landscape is sensitive to environmental changes.


2018 ◽  
Vol 1 (1) ◽  
pp. 25-36
Author(s):  
Rehmat Ullah ◽  
Shehzada Munawar Mehdi ◽  
Khalid Saif Ullah Khan ◽  
Aftab Ahmed Sheikh ◽  
Endang Sulistyowati ◽  
...  

This study was planned with hypothesis to quantify mineralization rate of wheat and groundnut straw spiked in Kahuta and Guliana soil series. Results revealed that groundnut and wheat strawspiked soils had increased quantum of microbial biomass carbon (Cmic), biomass nitrogen (Nmic) and biomass phosphorous (Pmic) and activities of enzyme dehydrogenase (DHA) and alkaline phosphatase (APA) than un-amended soils. Initially, the contents of soil Cmic, Nmic, Pmic, DHA, and APA increased gradually during 2-14th days of incubation (DAI), again increased significantly at 28th DAI and then decreased slowly at 60th DAI in all treatments under both series. Hence, the addition of groundnut straw mineralized better than to other organic sources in both soil series.  These results suggested that groundnut straw must be incorporated in soil one month before sowing of crop to enhance crop yield under rain-fed dry farming.Key words: Crop Residues, Microbial Biomass, Soil Enzymes, Aridisol, Alfisols


2018 ◽  
Vol 1 (1) ◽  
pp. 25-36
Author(s):  
Rehmat Ullah ◽  
Shehzada Munawar Mehdi ◽  
Khalid Saif Ullah Khan ◽  
Aftab Ahmed Sheikh ◽  
Endang Sulistyowati ◽  
...  

This study was planned with hypothesis to quantify mineralization rate of wheat and groundnut straw spiked in Kahuta and Guliana soil series. Results revealed that groundnut and wheat strawspiked soils had increased quantum of microbial biomass carbon (Cmic), biomass nitrogen (Nmic) and biomass phosphorous (Pmic) and activities of enzyme dehydrogenase (DHA) and alkaline phosphatase (APA) than un-amended soils. Initially, the contents of soil Cmic, Nmic, Pmic, DHA, and APA increased gradually during 2-14th days of incubation (DAI), again increased significantly at 28th DAI and then decreased slowly at 60th DAI in all treatments under both series. Hence, the addition of groundnut straw mineralized better than to other organic sources in both soil series.  These results suggested that groundnut straw must be incorporated in soil one month before sowing of crop to enhance crop yield under rain-fed dry farming.Key words: Crop Residues, Microbial Biomass, Soil Enzymes, Aridisol, Alfisols


Sign in / Sign up

Export Citation Format

Share Document