scholarly journals VARIASI GENETIK, HERITABILITAS, TINDAK GEN DAN KEMAJUAN GENETIK KEDELAI (Glycine max Merrill) PADA ULTISOL

2017 ◽  
Vol 9 (2) ◽  
pp. 183-190 ◽  
Author(s):  
Suprapto Suprapto ◽  
Narimah Md Kairudin

Information on genetic variation, heritability, gene action and genetic advance were important in the development of soybean varieties adapted on Ultisol. The objective of this experiment was to estimate genetic variation, hertability, gene action and genetic advance from the populaton used in breeding program. Six genotypes, i.e Dempo, Cikuray, Davros, Orba, Sindoro and Wilis were intercrossed using diallel Griffings’ Method 2 Model 1 (1956). These six genotypes and 15 F1  hybrids were planted on Ultisol using randomized complete block design with three replications located in Medan Baru village, Bengkulu city in 1999. The results of this experiment revealed that all traits showed low to high genetic variation, high broadsense heritability, low to high narrowsense heritability and genetic advance. Date of flowering and root length were fully controlled by additive gene action, however harvest index was fully controlled by   negative dominant gene action and epistasis. Other traits were controlled by positive and negative partially dominant, and positive overdominant  genes. 

Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 609
Author(s):  
Ilias D. Avdikos ◽  
Rafail Tagiakas ◽  
Pavlos Tsouvaltzis ◽  
Ioannis Mylonas ◽  
Ioannis N. Xynias ◽  
...  

Tomato is one of the most consumed fruit vegetables globally and is a high dietary source of minerals, fiber, carotenoids, and vitamin C. The tomato is also well known for its nutraceutical chemical content which strengthens human immune systems and is protective against infectious and degenerative diseases. For this reason, there has been recent emphasis on breeding new tomato cultivars with nutraceutical value. Most of the modern tomato cultivars are F1 hybrids, and many of the characteristics associated with fruit quality have additive gene action; so, in theory, inbred vigor could reach hybrid vigor. A sum of 20 recombinant lines was released from the commercial single-cross hybrids Iron, Sahara, Formula, and Elpida, through a breeding process. Those recombinant lines were evaluated during spring–summer 2015 under organic farming conditions in a randomized complete block design (RCBD) experimental design with three replications. A sum of eleven qualitative characteristics of the fruit was recorded on an individual plant basis. Results from this study indicated that the simultaneous selection of individual tomato plants, both in terms of their high yield and desired fruit quality characteristics, can lead to highly productive recombinant lines with integrated quality characteristics. So, inbred vigor can reach and even surpass hybrid vigor. The response to selection for all characteristics evaluated shows additive gene action of all characteristics measured. These recombinant lines can fulfill this role as alternatives to hybrid cultivars and those that possess high nutritional values to function as functional-protective food.


1997 ◽  
Vol 20 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Luis Alberto Pessoni ◽  
Maria José de O. Zimmermann ◽  
Josias Corrêa de Faria

Bean golden mosaic is the most important viral disease of the bean crop (Phaseolus vulgaris L.) in Latin America. The genetics of resistance to a Brazilian strain of bean golden mosaic virus (BGMV), was studied in a 4 x 4 diallel cross without reciprocals, among the parental genotypes DOR 303, EMGOPA 201 Ouro, Carnaval, and Redlands Greenleaf C. Seedlings of the four parents, six F1 hybrids, 12 backcrosses, and F2 generations for each combination were inoculated on the eighth day after sowing by exposure to a viruliferous whitefly (Bemisia tabaci Genn.) population for 24 h, in a glasshouse, prior to transplantation to field conditions. The full set of two parents, F1, F2 and respective backcrosses for each combination was considered to be a family. Data were recorded and analyzed for foliar yellowing, plant dwarfing, and pod malformation, using a randomized block design, with two replications. Weighted generation mean analysis was performed for each of the six families. An additive gene action model was significant for the three characteristics evaluated. On the other hand, non-additive gene action had greater absolute value in most cases. Resistance to foliar yellowing conferred by genes from DRO 303 was highly heritable and was expressed equally well in the different genetic backgrounds evaluated. Such resistance may be oligogenic. Broad- and narrow-sense heritabilities were relatively high for all response traits. The three traits studied were all positively correlated, indicating that they can be simultaneously selected for enhancement. The highest correlation coefficient was obtained for dwarfing x pod malformation.


2015 ◽  
Vol 3 (1) ◽  
pp. 73-79
Author(s):  
Golam Sarwar ◽  
Md. Sarowar Hossain ◽  
Md.Harun -Ur- Rashid ◽  
Shahanaz Parveen

The present study was conducted in the experimental farm, Sher-e-Bangla Agricultural University (SAU), Dhaka during July 2013-December2013. The analysis of variance revealed significant deviation for all the characters studied and indicated the existence of variation among thegenotypes. The PCV values were slightly higher than the respective GCV values for all the characters except unfilled grains per panicleindicating that the characters were less influenced by the environment. Total tillers per plant, effective tillers per plant, filled grains per panicle,unfilled grains per panicle and yield per plant showed high heritability coupled with high genetic advance percentage of mean which indicatedthe preponderance of additive gene action and such characters could be improved through selection. High heritability along with low geneticadvance as percentage of mean was found for plant height, days to 50% flowering, panicle length, days to maturity and thousand grains weightwhich indicated the non additive gene action for expression of these characters. Considering the genetic parameters and other agronomicperformances, the genotypes Special from AL-29, AL-36, PP-4B(i), AL-17(iii)B, AL-17(iii), AL-17(ii)A, Special from-129, Special from17(iv), AL-44(i), AL-17, Special from AL-36(D), PP-48, IR-25B, Special from AL-33, IR-25B (Tall), P-5B (ii) might be considered betterparents for future hybridization programme.DOI: http://dx.doi.org/10.3126/ijasbt.v3i1.11896    Int J Appl Sci Biotechnol, Vol. 3(1): 73-79 


2009 ◽  
Vol 57 (4) ◽  
pp. 417-423 ◽  
Author(s):  
S. Sharma ◽  
H. Chaudhary

The success of winter × spring wheat hybridization programmes depends upon the ability of the genotypes of these two physiologically distinct ecotypes to combine well with each other. Hence the present investigation was undertaken to study the combining ability and nature of gene action for various morpho-physiological and yield-contributing traits in crosses involving winter and spring wheat genotypes. Five elite and diverse genotypes each of winter and spring wheat ecotypes and their F 1 (spring × spring, winter × winter and winter × spring) hybrids, generated in a diallel mating design excluding reciprocals, were evaluated in a random block design with three replications. Considerable variability was observed among the spring and winter wheat genotypes for all the traits under study. Furthermore, these traits were highly influenced by the winter and spring wheat genetic backgrounds, resulting in significant differences between the spring × spring, winter × winter and winter × spring wheat hybrids for some of the traits. The winter × spring wheat hybrids were observed to be the best with respect to yieldcontributing traits. On the basis of GCA effects, the spring wheat parents HPW 42, HPW 89, HW 3024, PW 552 and UP 2418 and the winter wheat parents Saptdhara, VWFW 452, W 10 and WW 24 were found to be good combiners for the majority of traits. These spring and winter wheat parents could be effectively utilized in future hybridization programmes for wheat improvement. Superior hybrid combinations for one or more traits were identified, all of which involved at least one good general combiner for one or more traits in their parentage, and can thus be exploited in successive generations to develop potential recombinants through various breeding strategies. Genetic studies revealed the preponderance of additive gene action for days to flowering, days to maturity and harvest index, and non-additive gene action for the remaining six traits.


Genetics ◽  
1986 ◽  
Vol 114 (4) ◽  
pp. 1213-1223
Author(s):  
Edwin H Bryant ◽  
Lisa M Combs ◽  
Steven A McCommas

ABSTRACT Differentiation in morphometric traits among experimental populations of the housefly subjected to an experimental bottleneck was examined for replicate lines founded with one, four or 16 pairs of flies. Differentiation among lines within a bottleneck size was significantly greater than predicted by drift in relation to the additive genetic variation for these traits within the founding population. Two models of nonadditive genetic variance were investigated to interpret these results, one involving dominance of allelic effects within loci and another incorporating multiplicative epistasis. Both models generated more variation among lines as a direct result of sampling during the bottleneck than predicted by a model with additive gene action. The pattern of differentiation among our experimental lines in relation to these models conformed more to the model incorporating epistasis. Nevertheless, it may be difficult to distinguish differentiation among lines occurring during a bottleneck as a result of nonadditive gene action from that caused by diversifying selection among lines after the bottleneck.


2021 ◽  
Author(s):  
Divya Chaudhary ◽  
Swati ◽  
Kuldeep Nagar ◽  
Richa Dhyani

Abstract Experiments were conducted to study the genetics and combining ability for yield and its attributes under Irrigated (E1) and Rainfed (E2) conditions using F1 hybrids derived from Line X Tester mating design by crossing eleven lines with three testers. Significant differences were observed among all the genotypes for all the traits in both E1 and E2 environments as well as in pooled analysis. The σ2gca/σ2sca ratio indicated predominance of non-additive gene action for all the characters in both environments. Therefore, this component of variance can be utilize in breeding programme through exploitation of heterosis and the selection process for identification of superior plant type should be postponed to further generations like F4 or F5. VL3001 and KACHU*2//WHEAR/SOKOLL was identified as good general combiner in irrigated condition (E1) and in rainfed condition (E2), respectively for maximum number of traits. Parent VL3001 was also identified as good general combiner for maximum number of traits in case of pooled analysis. Cross BECARD/KACHU × WH1080, BOW/VEE/5/ND/VG9144//KAL/BBB/YACO/4/CHIL/6/CASKOR/3/… × WH1080 and C306 × WH1142 was identified as good specific combination for maximum number of traits in irrigated condition (E1), rainfed condition (E2) and in pooled analysis, respectively.


Author(s):  
Birender Singh ◽  
Abhinav Abhishek ◽  
R. B. P. Nirala ◽  
S. S. Mandal ◽  
Tushar Ranjan

The present investigation was carried out using thirty eight genotypes (eight parents, twenty eight F1's and two checks) using Griffing's half diallel mating design. The experiment was laid out in a randomized complete block design with three replications during kharif 2017 at the research farm of Bihar Agriculture College, Sabour. Observations were recorded for six pre-harvest characters viz days to 50% anthesis, days to 50% silking, anthesis silking interval, days to 75% brown husk, plant height, ear height and seven post-harvest characters viz cob length, cob diameter, number of kernel rows per cob, number of kernels per row, 1000 seed weight, shelling percentage and grain yield at 15% moisture. The mean sum of square of treatments was found to be significant for days to 75% brown husk and shelling per cent and highly significant for all other characters. The mean sum of square for GCA was found to be significant for cob length, no. of kernel row per cob, no. of kernels per row and highly significant for remaining all the characters except days to 75% brown husk and shelling%. The mean sum of square for SCA was significant for days to 75% brown husk and highly significant for all the remaining characters. On the basis of GCA effect for grain yield at 15% moisture, the parents BML-7, VQL-1 and SML-1 were found to be good general combiners. The ratio of GCA variance to SCA variance was found to be less than 1 for all the traits which indicated the preponderance of non-additive gene action. On the basis of SCA effects better performing crosses for grain yield at 15% moisture were DTPYC-9 × LM-13, CLQRCY-44 × VQL-1, CML-161 × SML-1 and CML-161× BML-7.


2021 ◽  
Vol 16 (2) ◽  
pp. 99-102
Author(s):  
Induri Anusha ◽  
Gabriyal M. Lal

Mutations were induced in three chickpea genotypes, ICC-15936, BRC-1104-127 and C-108 using sodium azide (SA) as a mutagen. The immediate effects of mutagenic treatments were measured in terms of biological damage caused in M1 generation. All the mutagenic treatments brought reduction in seed germination, seedling length and plant survival. Such reduction, with an exception of plant survival, were found to be depended upon the dosage of the concentration.High GCV and PCV in chickpea germplasm were observed for number of effective pods per plant, number of secondary branches per plant, number of pods per plant, seed yield per plant, plant height, number of primary branches per plant, seed index, harvest index, biological yield per plant. High estimate of heritability coupled with high genetic advance as percent of mean was recorded for number of effective pods per plant, number of secondary branches, number of pods per plant and seed yield per plant. High values for heritability indicates that it maybe due to higher contribution of genotypic components. Traits exhibiting high heritability coupled with genetic advance as percent of mean suggest that the traits are governed by additive gene action, equal contribution of additive and non-additive gene action respectively.


2017 ◽  
Vol 15 (1) ◽  
pp. 15-19
Author(s):  
MM Rashid ◽  
M Nuruzzaman ◽  
L Hassan ◽  
SN Begum

An experiment was conducted using a randomized complete block design to estimate genetic variability of ten rice genotypes. Analysis of variance for yield and yield contributing traits showed significant (p<0.01) variation among the genotypes. Results of genetic analyses showed a higher phenotypic coefficient of variation compared to their corresponding genotypic coefficient of variation for all the traits measured, which indicates that the traits were influenced by environment. The magnitude of difference between phenotypic coefficient of variance (PCV) and genotypic coefficient of variance (GCV) was less for the traits indicating little influence of environment. The higher estimates of PCV and GCV were observed for number of filled grains panicle–1 (27.53; 26.84), number of unfilled grains panicle–1 (26.76;25.28) and plant height (23.14; 23.00) indicates possibility of genetic improvement through direct selection for these traits, while days to 50% flowering, days to maturity, panicle length, number of effective tillers plant–1, fertility (%), 1000 Seed weight and yield panicle–1 showed low PCV and GCV values indicating the need for creation of variability by hybridization or mutation followed by selection. High heritability values (>60%) along with high genetic advance and genetic advance as percentage of mean were found for all the traits indicating prevalence of additive gene action, which provides good scope for further improvement by selection.J. Bangladesh Agril. Univ. 15(1): 15-19, January 2017


2019 ◽  
Vol 11 (2) ◽  
pp. 233-240
Author(s):  
Minangsari DEWANTI ◽  
Suskandari KARTIKANINGRUM ◽  
Mega WEGADARA ◽  
Budi WINARTO

Hybridization is the process on interbreeding between individuals of different species or genetically divergent individuals from the same species to produce new progenies with their uniqueness and differences, involving in Vanda. Aim of this research was to explore genotypic and phenotypic variability, heritability and genetic advance of progenies derived from hybridization of Vanda ‘Adrienne’ × Ascocenda ‘Peggy Foo’ with Vanda malinii × Vanda denisoniana Benson & Rchb.f, and to find best characters used for selection. The experiment was conducted at Segunung Experimental Garden of Indonesian Ornamental Crop Research Institute (IOCRI) on altitude of 1100 m above sea level from June 2013 until December 2016. Thirteen genotypes derived from hybridization of V. ‘Adrienne’ × A. ‘Peggy Foo’ with V. malinii × V. denisoniana of 1A, 2A, 21A, 27A, 50A, 52A, 98A, 101A, 102A, 113A, 116A, 120A, and 120B were used in the study. The experiment was arranged in a Randomized Complete Block Design (RCBD) with three replications. Results of the study indicated that range of genetic variability was varied from 1.2-184.7% with wide genetic variability determined on number of leaves per plant (NLP) up to 26.5% with 184.7% for leaf width (LW) and 24.7% for spike length (SL). Moderate heritability of 25.2% for NLP, 21.0% for LW and 25.2% for SL coupled with high genetic advance percent of mean up to 59.7% for NLP, 939.7% for LW and 33% for SL, reflecting the presence and expression of additive gene action of these traits. The results indicated the importance of these three characters best used as selection criteria for Vanda genotypes.


Sign in / Sign up

Export Citation Format

Share Document