scholarly journals Adaptive plasticity – its definition, measurement, and importance

2021 ◽  
Author(s):  
Rob Brooker ◽  
Lawrie K Brown ◽  
Timothy S. George ◽  
Robin J. Pakeman ◽  
Sarah Palmer ◽  
...  

Plasticity is a widely used concept in plant sciences, but there is inconsistency over its interpretation and measurement. One aspect of plasticity – adaptive plasticity – may be particularly important in shaping plant fitness and reproductive success and represents the first line of a plants defence to environmental change. Here, we define adaptive plasticity, highlight its importance to plant growth and survival, and suggest appropriate approaches for its measurement. We argue that a focus on adaptive plasticity could help address some fundamental challenges in plant ecology and evolutionary biology, including developing insight into climate-change resilience of natural populations and crops.

Author(s):  
Huei-Yi Lai ◽  
Tim F. Cooper

Determining pattern in the dynamics of population evolution is a long-standing focus of evolutionary biology. Complementing the study of natural populations, microbial laboratory evolution experiments have become an important tool for addressing these dynamics because they allow detailed and replicated analysis of evolution in response to controlled environmental and genetic conditions. Key findings include a tendency for smoothly declining rates of adaptation during selection in constant environments, at least in part a reflection of antagonism between accumulating beneficial mutations, and a large number of beneficial mutations available to replicate populations leading to significant, but relatively low genetic parallelism, even as phenotypic characteristics show high similarity. Together, there is a picture of adaptation as a process with a varied and largely unpredictable genetic basis leading to much more similar phenotypic outcomes. Increasing sophistication of sequencing and genetic tools will allow insight into mechanisms behind these and other patterns.


1997 ◽  
Vol 75 (4) ◽  
pp. 542-548 ◽  
Author(s):  
P. H. Niewiarowski ◽  
J. D. Congdon ◽  
A. E. Dunham ◽  
L. J. Vitt ◽  
D. W. Tinkle

Potential costs and benefits of tail autotomy in lizards have been inferred almost exclusively from experimental study in semi-natural enclosures and from indirect comparative evidence from natural populations. We present complementary evidence of the costs of tail autotomy to the lizard Uta stansburiana from detailed demographic study of a natural population. On initial capture, we broke the tails of a large sample of free-ranging hatchlings (560) and left the tails of another large sample (455) intact, and then followed subsequent hatchling growth and survival over a 3-year period. Surprisingly, in 1 out of the 3 years of study, survival of female hatchlings with broken tails exceeded that of female hatchlings with intact tails. Furthermore, no effects of tail loss on survivorship were detected for male hatchlings. However, in 2 years when recaptures were very frequent (1961, 1962), growth rates of hatchlings with broken tails were significantly slower than those of their counterparts with intact tails. We discuss our results in the broader context of estimating the relative costs and benefits of tail autotomy in natural populations, and suggest that long-term demographic studies will provide the best opportunity to assess realized fitness costs and benefits with minimum bias. We also describe how experimentally induced tail autotomy can be used as a technique to complement experimental manipulation of reproductive investment in the study of life-history trade-offs.


2000 ◽  
Vol 12 (3) ◽  
pp. 257-257 ◽  
Author(s):  
Andrew Clarke

Theodosius Dobzhansky once remarked that nothing in biology makes sense other than in the light of evolution, thereby emphasising the central role of evolutionary studies in providing the theoretical context for all of biology. It is perhaps surprising then that evolutionary biology has played such a small role to date in Antarctic science. This is particularly so when it is recognised that the polar regions provide us with an unrivalled laboratory within which to undertake evolutionary studies. The Antarctic exhibits one of the classic examples of a resistance adaptation (antifreeze peptides and glycopeptides, first described from Antarctic fish), and provides textbook examples of adaptive radiations (for example amphipod crustaceans and notothenioid fish). The land is still largely in the grip of major glaciation, and the once rich terrestrial floras and faunas of Cenozoic Gondwana are now highly depauperate and confined to relatively small patches of habitat, often extremely isolated from other such patches. Unlike the Arctic, where organisms are returning to newly deglaciated land from refugia on the continental landmasses to the south, recolonization of Antarctica has had to take place by the dispersal of propagules over vast distances. Antarctica thus offers an insight into the evolutionary responses of terrestrial floras and faunas to extreme climatic change unrivalled in the world. The sea forms a strong contrast to the land in that here the impact of climate appears to have been less severe, at least in as much as few elements of the fauna show convincing signs of having been completely eradicated.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244803
Author(s):  
Irina Goodrich ◽  
Clifton McKee ◽  
Michael Kosoy

Protozoan parasites of the genus Trypanosoma infect a broad diversity of vertebrates and several species cause significant illness in humans. However, understanding of the phylogenetic diversity, host associations, and infection dynamics of Trypanosoma species in naturally infected animals is incomplete. This study investigated the presence of Trypanosoma spp. in wild rodents and lagomorphs in northern New Mexico, United States, as well as phylogenetic relationships among these parasites. A total of 458 samples from 13 rodent and one lagomorph species collected between November 2002 and July 2004 were tested by nested PCR targeting the 18S ribosomal RNA gene (18S rRNA). Trypanosoma DNA was detected in 25.1% of all samples, with the highest rates of 50% in Sylvilagus audubonii, 33.1% in Neotoma micropus, and 32% in Peromyscus leucopus. Phylogenetic analysis of Trypanosoma sequences revealed five haplotypes within the subgenus Herpetosoma (T. lewisi clade). Focused analysis on the large number of samples from N. micropus showed that Trypanosoma infection varied by age class and that the same Trypanosoma haplotype could be detected in recaptured individuals over multiple months. This is the first report of Trypanosoma infections in Dipodomys ordii and Otospermophilus variegatus, and the first detection of a haplotype phylogenetically related to T. nabiasi in North America in S. audubonii. This study lends important new insight into the diversity of Trypanosoma species, their geographic ranges and host associations, and the dynamics of infection in natural populations.


2021 ◽  
Author(s):  
Meret Huber ◽  
Saskia Gablenz ◽  
Martin Höfer

ABSTRACTAlthough non-genetic inheritance is thought to play an important role in plant ecology and evolution, evidence for adaptive transgenerational plasticity is scarce. Here, we investigated the consequences of copper excess on offspring defences and fitness in the giant duckweed (Spirodela polyrhiza) across multiple asexual generations. We found that exposing large monoclonal populations (>10,000 individuals) for 30 generations to copper excess decreased plant fitness during the first few generations but increased their fitness in consecutive generations under recurring stress when plants were grown for 5 generations under control conditions prior recurring conditions. Similarly, propagating individual plants as single descendants for 5 or 10 generations under copper excess decreased plant fitness when 5 generations and improved plant fitness when 10 generations passed between initial and recurring stress; thus, transgenerational stress responses likely contributed to the observed variations in offspring fitness of long-term copper exposed populations. Fitness benefits under recurring stress were partially associated with avoidance of excessive copper accumulation, which in turn correlated with transgenerationally modified flavonoid concentrations. Taken together, these data demonstrate time-dependent adaptive transgenerational responses under recurring stress, which highlights the importance of non-genetic inheritance for plant ecology and evolution.


Author(s):  
Graham Bell

Darwin insisted that evolutionary change occurs very slowly over long periods of time, and this gradualist view was accepted by his supporters and incorporated into the infinitesimal model of quantitative genetics developed by R. A. Fisher and others. It dominated the first century of evolutionary biology, but has been challenged in more recent years both by field surveys demonstrating strong selection in natural populations and by quantitative trait loci and genomic studies, indicating that adaptation is often attributable to mutations in a few genes. The prevalence of strong selection seems inconsistent, however, with the high heritability often observed in natural populations, and with the claim that the amount of morphological change in contemporary and fossil lineages is independent of elapsed time. I argue that these discrepancies are resolved by realistic accounts of environmental and evolutionary changes. First, the physical and biotic environment varies on all time-scales, leading to an indefinite increase in environmental variance over time. Secondly, the intensity and direction of natural selection are also likely to fluctuate over time, leading to an indefinite increase in phenotypic variance in any given evolving lineage. Finally, detailed long-term studies of selection in natural populations demonstrate that selection often changes in direction. I conclude that the traditional gradualist scheme of weak selection acting on polygenic variation should be supplemented by the view that adaptation is often based on oligogenic variation exposed to commonplace, strong, fluctuating natural selection.


2019 ◽  
Vol 11 (12) ◽  
pp. 1266-1272 ◽  
Author(s):  
Krishnan Ravindran ◽  
Lauren A Dalvin ◽  
Jose S Pulido ◽  
Waleed Brinjikji

Background and purposeIntra-arterial chemotherapy for retinoblastoma has been adopted as a first-line treatment option by numerous tertiary centers. The effect of intra-arterial chemotherapy on future rates of metastatic disease as well as on globe salvage in advanced eyes remains relatively unknown.MethodsA search of PubMED, MEDLINE, EMBASE, and Web of Science electronic databases was conducted from inception until January 2019 for studies with a minimum of 10 patients reporting outcomes and complications following intra-arterial chemotherapy for retinoblastoma.ResultsA total of 20 studies met the inclusion criteria for analysis, comprising 873 patients and 1467 eyes. Only one study was comparative; there was substantial heterogeneity in reported outcomes and several overlapping patient cohorts that were published. Across all studies, 174 of 1467 eyes were enucleated (11.8%). Metastatic disease occurred in 8 of 513 patients (1.6%). Globe salvage was achieved in 318 of 906 (35.6%) cases of advanced retinoblastoma. The most common ocular complication was retinal detachment, occurring in 23% of eyes, and the most common systemic complications were transient fever and nausea/vomiting.ConclusionsThere is a paucity of higher-level evidence with adequate follow-up surrounding the long-term safety of intra-arterial chemotherapy and effect on metastasis in retinoblastoma. Studies to date have been limited by short-term follow-up. Longitudinal prospective studies could provide greater insight into the ability of intra-arterial chemotherapy to reduce the risk of retinoblastoma metastasis.


2019 ◽  
Vol 36 (8) ◽  
pp. 1686-1700 ◽  
Author(s):  
Covadonga Vara ◽  
Laia Capilla ◽  
Luca Ferretti ◽  
Alice Ledda ◽  
Rosa A Sánchez-Guillén ◽  
...  

Abstract One of the major challenges in evolutionary biology is the identification of the genetic basis of postzygotic reproductive isolation. Given its pivotal role in this process, here we explore the drivers that may account for the evolutionary dynamics of the PRDM9 gene between continental and island systems of chromosomal variation in house mice. Using a data set of nearly 400 wild-caught mice of Robertsonian systems, we identify the extent of PRDM9 diversity in natural house mouse populations, determine the phylogeography of PRDM9 at a local and global scale based on a new measure of pairwise genetic divergence, and analyze selective constraints. We find 57 newly described PRDM9 variants, this diversity being especially high on Madeira Island, a result that is contrary to the expectations of reduced variation for island populations. Our analysis suggest that the PRDM9 allelic variability observed in Madeira mice might be influenced by the presence of distinct chromosomal fusions resulting from a complex pattern of introgression or multiple colonization events onto the island. Importantly, we detect a significant reduction in the proportion of PRDM9 heterozygotes in Robertsonian mice, which showed a high degree of similarity in the amino acids responsible for protein–DNA binding. Our results suggest that despite the rapid evolution of PRDM9 and the variability detected in natural populations, functional constraints could facilitate the accumulation of allelic combinations that maintain recombination hotspot symmetry. We anticipate that our study will provide the basis for examining the role of different PRDM9 genetic backgrounds in reproductive isolation in natural populations.


1990 ◽  
Vol 36 ◽  
pp. 567-579 ◽  

Sewall Wright's active life spanned the development of genetics from a new discipline when the principles of inheritance were still being elucidated to the technology of recombinant gene construction and insertion. He was one of the major pioneers of population genetics, which gave a quantitative basis to the studies of evolution, of variation in natural populations and of animal and plant breeding. He contributed most significantly to methods and ideas over a long period, indeed his four volume treatise was written long after he formally ‘retired’ and his last paper (211) was published a few days before his death at the age of 98. In the field of population genetics Wright developed the method of path coefficients, which he used to analyse quantitative genetic variation and relationship, but which has been applied to subjects as diverse as economics, the ideas of inbreeding coefficient and F -statistics which form the basis of analysis of population structure, the theory of variation in gene frequency among populations, and the shifting balance theory of evolution, which remains a topic of active research and controversy. Wright contributed to physiological genetics, notably analysis of the inheritance of coat colour in the guinea pig, and in particular the epistatic relationships among the genes involved. There was a critical interplay between his population and physiological work, in that the analysis of finite populations on the one hand and of epistatic interactions on the other are the bases of Wright’s development of the shifting balance theory. A full and enlightening biography of Sewall Wright which traces his influence on evolutionary biology and his interactions with other important workers was published recently (Provine 1986) and shorter appreciations have appeared since his death, notably by Crow (1988), Wright’s long-time colleague. This biography relies heavily on Provine’s volume, and does no more than summarize Wright’s extensive contributions. Many of his important papers have been reprinted recently (1986).


2017 ◽  
Vol 114 (31) ◽  
pp. 8325-8329 ◽  
Author(s):  
Mathieu Chouteau ◽  
Violaine Llaurens ◽  
Florence Piron-Prunier ◽  
Mathieu Joron

Explaining the maintenance of adaptive diversity within populations is a long-standing goal in evolutionary biology, with important implications for conservation, medicine, and agriculture. Adaptation often leads to the fixation of beneficial alleles, and therefore it erodes local diversity so that understanding the coexistence of multiple adaptive phenotypes requires deciphering the ecological mechanisms that determine their respective benefits. Here, we show how antagonistic frequency-dependent selection (FDS), generated by natural and sexual selection acting on the same trait, maintains mimicry polymorphism in the toxic butterfly Heliconius numata. Positive FDS imposed by predators on mimetic signals favors the fixation of the most abundant and best-protected wing-pattern morph, thereby limiting polymorphism. However, by using mate-choice experiments, we reveal disassortative mate preferences of the different wing-pattern morphs. The resulting negative FDS on wing-pattern alleles is consistent with the excess of heterozygote genotypes at the supergene locus controlling wing-pattern variation in natural populations of H. numata. The combined effect of positive and negative FDS on visual signals is sufficient to maintain a diversity of morphs displaying accurate mimicry with other local prey, although some of the forms only provide moderate protection against predators. Our findings help understand how alternative adaptive phenotypes can be maintained within populations and emphasize the need to investigate interactions between selective pressures in other cases of puzzling adaptive polymorphism.


Sign in / Sign up

Export Citation Format

Share Document