scholarly journals Unveiling DNA algorithms: satellite DNA sequences as iterable objects. A computational model.

2022 ◽  
Marco Regolini

Every adult male of the little roundworm Caenorhabditis elegans is always and invariably comprised of exactly 1031 somatic cells, not one more, not one less; and so it is for the adult hermaphrodite (959 somatic cells); its intestine founder cell (the ‘E’ blastomere), if isolated and cultured, undergoes the same number of divisions as in the whole embryo (Robertson et al., 2014); the zygote of Drosophila melanogaster executes 13 cycles of asynchronous cell divisions without cellularization: how are these numbers counted? Artificial Intelligence (First and Second Order Logic, Knowledge graph Engineering) infers that, to perform precise stereotypical numbers of asynchronous cell divisions, a nucleic (genomic) counter is indispensable. Made up of tandemly repeated similar monomers, satellite DNA (satDNA) corresponds to iterable objects used in programming. The purpose of this article is to show how satDNA sequences can be iterated over to count a deterministic number of cell divisions: computational models (attached for free download) are introduced that handle DNA repeated sequences as iterable counters and simulate their use in cells through an epigenetic marker (cytosine methylation) as an iterator. SatDNA, because of its propensity to remodel its structure, can also operate as a strong accelerator in the evolution of complex organs and provides a basis to control interspecific variability of shapes.

Genome ◽  
2009 ◽  
Vol 52 (4) ◽  
pp. 381-390 ◽  
K. Anamthawat-Jónsson ◽  
T. Wenke ◽  
Æ. Th. Thórsson ◽  
S. Sveinsson ◽  
F. Zakrzewski ◽  

The genus Leymus (lymegrass) comprises about 30 polyploid, perennial, temperate grass species in the tribe Triticeae (family Poaceae). Previous studies indicated a large diversity in the Leymus genome, and therefore, the aim of this study was to isolate new repetitive DNA sequences that can be used for differentiating Leymus species and elucidating their genomic relationships. A C0t-1 DNA plasmid library was generated from genomic DNA of American tetraploid species Leymus triticoides . A family of highly repetitive satellite DNA sequences, designated Lt1, was obtained from this library. The Lt1 family consisted of 380 bp SacI repeating units arranging in tandem arrays. A 120 bp MspI subfamily was discovered within this family, indicating that cytosine methylation may have played an important role in the evolution of satellite sequences. The Lt1 satellite was localized in the subtelomeric heterochromatic blocks of L. triticoides chromosomes, which are present on all chromosomes and often on both arms. The Lt1 sequences are abundant in L. triticoides but absent in its closely related species Leymus racemosus . Significant homology was found between the Lt1 family and numerous repetitive sequences from Poaceae species, indicating that the Lt1 is an ancient family of tandemly repeated sequences in grasses.

1988 ◽  
Vol 8 (2) ◽  
pp. 737-746
D Eide ◽  
P Anderson

The transposable element Tc1 is responsible for most spontaneous mutations that occur in Caenorhabditis elegans variety Bergerac. We investigated the genetic and molecular properties of Tc1 transposition and excision. We show that Tc1 insertion into the unc-54 myosin heavy-chain gene was strongly site specific. The DNA sequences of independent Tc1 insertion sites were similar to each other, and we present a consensus sequence for Tc1 insertion that describes these similarities. We show that Tc1 excision was usually imprecise. Tc1 excision was imprecise in both germ line and somatic cells. Imprecise excision generated novel unc-54 alleles that had amino acid substitutions, amino acid insertions, and, in certain cases, probably altered mRNA splicing. The DNA sequences remaining after Tc1 somatic excision were the same as those remaining after germ line excision, but the frequency of somatic excision was at least 1,000-fold higher than that of germ line excision. The genetic properties of Tc1 excision, combined with the DNA sequences of the resulting unc-54 alleles, demonstrated that excision was dependent on Tc1 transposition functions in both germ line and somatic cells. Somatic excision was not regulated in the same strain-specific manner as germ-line excision was. In a genetic background where Tc1 transposition and excision in the germ line was not detectable, Tc1 excision in the soma still occurred at high frequency.

1987 ◽  
Vol 164 (2) ◽  
pp. 287-293 ◽  
Wolfgang MEYERHOF ◽  
Burghardt WITTIG ◽  
Beatrix TAPPESER ◽  

1996 ◽  
Vol 109 (9) ◽  
pp. 2199-2206
A.R. Mitchell ◽  
P. Jeppesen ◽  
L. Nicol ◽  
H. Morrison ◽  
D. Kipling

Chromosome 1 of the inbred mouse strain DBA/2 has a polymorphism associated with the minor satellite DNA at its centromere. The more terminal block of satellite DNA sequences on this chromosome acts as the centromere as shown by the binding of CREST ACA serum, anti-CENP-B and anti-CENP-E polyclonal sera. Demethylation of the minor satellite DNA sequences accomplished by growing cells in the presence of the drug 5-aza-2′-deoxycytidine results in a redistribution of the CENP-B protein. This protein now binds to an enlarged area on the more terminal block and in addition it now binds to the more internal block of minor satellite DNA sequences on chromosome 1. The binding of the CENP-E protein does not appear to be affected by demethylation of the minor satellite sequences. We present a model to explain these observations. This model may also indicate the mechanism by which the CENP-B protein recognises specific sites within the arrays of minor satellite DNA on mouse chromosomes.

1996 ◽  
Vol 109 (9) ◽  
pp. 2221-2228 ◽  
L. Nicol ◽  
P. Jeppesen

We have analyzed the organization of the homogeneously staining regions (HSRs) in chromosomes from a methotrexate-resistant mouse melanoma cell line. Fluorescence in situ hybridization techniques were used to localize satellite DNA sequences and the amplified copies of the dihydrofolate reductase (DHFR) gene that confer drug-resistance, in combination with immunofluorescence using antibody probes to differentiate chromatin structure. We show that the major DNA species contained in the HSRs is mouse major satellite, confirming previous reports, and that this is interspersed with DHFR DNA in an alternating tandem array that can be resolved at the cytological level. Mouse minor satellite DNA, which is normally located at centromeres, is also distributed along the HSRs, but does not appear to interfere with centromere function. The blocks of major satellite DNA are coincident with chromatin domains that are labelled by an autoantibody that recognizes a mammalian homologue of Drosophila heterochromatin-associated protein 1, shown previously to be confined to centric heterochromatin in mouse. An antiserum that specifically recognizes acetylated histone H4, a marker for active chromatin, fails to bind to the satellite DNA domains, but labels the intervening segments containing DHFR DNA. We can find no evidence for the spreading of the inactive chromatin domains into adjacent active chromatin, even after extended passaging of cells in the absence of methotrexate selection.

2008 ◽  
Vol 20 (1) ◽  
pp. 210
B. A. Didion ◽  
R. Bleher

While flow cytometric separation of X- andY-chromosome- bearing sperm has advanced to the point of acceptance in the commercial production of sex-preselected cattle, it is important to continue researching this area to improve efficiencies. For example, the difference in DNA sequence between the X- andY-chromosomes has merit as a foundation for an alternative sperm sexing approach that could enable the complete separation and use of an entire ejaculate. We used synthetic DNA mimics conjugated to a fluorescent dye for in situ detection of Y-chromosomes in metaphase preparations of porcine somatic cells and spermatozoa. Peptide nucleic acids (PNA) are synthetic compounds with higher affinity and stability than conventional DNA probes and are used as specific hybridization probes to complementary DNA. The application of PNA probes was demonstrated previously in telomere analysis studies, and we confirmed their efficacy using a CY3-(CCCTAA)3 PNA to probe bull and boar sperm telomeric sequences. Using male porcine somatic cells and theY-chromosome as a template, we arranged for the synthesis of a CY3-conjugated PNA to bind 13-15 base pairs of unique, Y-chromosome sequence. By testing different labeling conditions, we found that brief incubation of metaphase chromosomes with the PNA produced a localized signal on theY-chromosome. No signals were present when chromosomes of porcine female somatic cells were incubated with the PNA probes. Because chromosomes occupy non-random territories in all cell nuclei including those in sperm, we expected to find centrally located signals in 50% of fixed boar sperm when these were treated with the same PNA as used for the somatic cells. We found the signals present in 161 of 302 (53.3%) sperm to consist of a single, centrally located, round fluorescent dot in the sperm head. Further research is required to establish the uptake of PNA in live sperm toward evaluation of this approach for sperm sexing.

1975 ◽  
Vol 96 (4) ◽  
pp. 665-692 ◽  
Sharyn A. Endow ◽  
Mary Lake Polan ◽  
Joseph G. Gall

Chromosoma ◽  
2004 ◽  
Vol 112 (7) ◽  
pp. 372-373 ◽  
Kazuhiko Yamada ◽  
Chizuko Nishida-Umehara ◽  
Yoichi Matsuda

Sign in / Sign up

Export Citation Format

Share Document