A hole in the black hole

2019 ◽  
Author(s):  
Matheus Pereira Lobo

Supposedly, matter falls inside the black hole whenever it reaches its event horizon. The Planck scale, however, imposes a limit on how much matter can occupy the center of a black hole. It is shown here that the density of matter exceeds Planck density in the singularity, and as a result, spacetime tears apart. After the black hole is formed, matter flows from its center to its border due to a topological force; namely, the increase on the tear of spacetime due to its limit, until it reaches back to the event horizon, generating the firewall phenomenon. We conclude that there is no spacetime inside black holes. We propose a solution to the black hole information paradox.

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Xuanhua Wang ◽  
Ran Li ◽  
Jin Wang

Abstract We apply the recently proposed quantum extremal surface construction to calculate the Page curve of the eternal Reissner-Nordström black holes in four dimensions ignoring the backreaction and the greybody factor. Without the island, the entropy of Hawking radiation grows linearly with time, which results in the information paradox for the eternal black holes. By extremizing the generalized entropy that allows the contributions from the island, we find that the island extends to the outside the horizon of the Reissner-Nordström black hole. When taking the effect of the islands into account, it is shown that the entanglement entropy of Hawking radiation at late times for a given region far from the black hole horizon reproduces the Bekenstein-Hawking entropy of the Reissner-Nordström black hole with an additional term representing the effect of the matter fields. The result is consistent with the finiteness of the entanglement entropy for the radiation from an eternal black hole. This facilitates to address the black hole information paradox issue in the current case under the above-mentioned approximations.


2002 ◽  
Vol 11 (10) ◽  
pp. 1537-1540 ◽  
Author(s):  
SAMIR D. MATHUR

The entropy and information puzzles arising from black holes cannot be resolved if quantum gravity effects remain confined to a microscopic scale. We use concrete computations in nonperturbative string theory to argue for three kinds of nonlocal effects that operate over macroscopic distances. These effects arise when we make a bound state of a large number of branes, and occur at the correct scale to resolve the paradoxes associated with black holes.


2001 ◽  
Vol 16 (supp01c) ◽  
pp. 1001-1004
Author(s):  
SAMIR D. MATHUR

Results from string theory strongly suggest that formation and evaporation of black holes is a unitary process. Thus we must find a flaw in the semiclassical reasoning that implies a loss of information. We propose a new criterion that limits the domain of classical gravity: the hypersurfaces of a foliation cannot be stretched too much.


2013 ◽  
Vol 11 (01) ◽  
pp. 1450010 ◽  
Author(s):  
MIR FAIZAL

In this paper we will analyze the black hole information paradox in group field cosmology. We will first construct a group field cosmology with third quantized gauge symmetry. Then we will argue that in this group field cosmology the process that changes the topology of spacetime is unitarity process. Thus, the information paradox from this perspective appears only because we are using a second quantized formalism to explain a third quantized process. A similar paradox would also occur if we analyze a second quantized process in first quantized formalism. Hence, we will demonstrate that in reality there is no information paradox but only a breakdown of the second quantized formalism.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Yi Ling ◽  
Yuxuan Liu ◽  
Zhuo-Yu Xian

Abstract We study the information paradox for the eternal black hole with charges on a doubly-holographic model in general dimensions, where the charged black hole on a Planck brane is coupled to the baths on the conformal boundaries. In the case of weak tension, the brane can be treated as a probe such that its backreaction to the bulk is negligible. We analytically calculate the entanglement entropy of the radiation and obtain the Page curve with the presence of an island on the brane. For the near-extremal black holes, the growth rate is linear in the temperature. Taking both Dvali-Gabadadze-Porrati term and nonzero tension into account, we obtain the numerical solution with backreaction in four-dimensional spacetime and find the quantum extremal surface at t = 0. To guarantee that a Page curve can be obtained in general cases, we propose two strategies to impose enough degrees of freedom on the brane such that the black hole information paradox can be properly described by the doubly-holographic setup.


Author(s):  
Michael Kachelriess

Black holes are introduced as solutions of Einsteins equations contain-ing a physical singularity covered by an event horizon. The properties of Schwarzschild and of Kerr black holes are examined. It is demonstrated that the event horizon of a black hole can only increase within classical physics. However, the event horizon is an infinite redshift surface and emits in the semi-classical picture thermal radiation. This Hawking radiation leads in turn to the information paradox.


Author(s):  
Xueyi Tian

The black hole information paradox is one of the most puzzling paradoxes in physics. Black holes trap everything that falls into them, while their mass may leak away through purely thermal Hawking radiation. When a black hole vanishes, all the information locked inside, if any, is just lost, thus challenging the principles of quantum mechanics. However, some information does have a way to escape from inside the black hole, that is, through gravitational waves. Here, a concise extension of this notion is introduced. When a black hole swallows something, whether it is a smaller black hole or an atom, the system emits gravitational waves carrying the information about the “food”. Although most of the signals are too weak to be detected, the information encoded within them will persist in the universe. This speculation provides an explanation for a large part, if not all, of the supposed “information loss” in black holes, and thus reconciles the predictions of general relativity and quantum mechanics.


2000 ◽  
Vol 15 (30) ◽  
pp. 4877-4882 ◽  
Author(s):  
SAMIR D. MATHUR

The recent progress in string theory strongly suggests that formation and evaporation of black holes is a unitary process. This fact makes it imperative that we find a flaw in the semiclassical reasoning that implies a loss of information. We propose a new criterion that limits the domain of classical gravity: the hypersurfaces of a foliation cannot be stretched too much. This conjectured criterion may have important consequences for the early universe.


2008 ◽  
Vol 2008 ◽  
pp. 1-12 ◽  
Author(s):  
Leonardo Modesto

We calculate modifications to the Schwarzschild solution by using a semiclassical analysis of loop quantum black hole. We obtain a metric inside the event horizon that coincides with the Schwarzschild solution near the horizon but that is substantially different at the Planck scale. In particular, we obtain a bounce of theS2sphere for a minimum value of the radius and that it is possible to have another event horizon close to ther=0point.


Sign in / Sign up

Export Citation Format

Share Document