scholarly journals Computational prediction model for pepper yield prediction using support vector regression.

Author(s):  
Akhil Wilson ◽  
N. Hemalatha ◽  
Raji Sukumar

Abstract The yield prediction is the one of the challenging problem in agriculture. Here in this research work we have predicted the yield of Pepper in the state of Kerala, India. With the help of Machine Learning and by considering the soil properties, micro climatic condition and area of the Pepper we have predicted the yield. Here we have used Linear Regression and Support Vector Regression algorithms in order to predict the pepper yield. Experimental results gave best accuracy of 97.685% for Support Vector Regression.

2021 ◽  
Author(s):  
Akhil Wilson ◽  
Raji Sukumar ◽  
N. Hemalatha

Abstract The prediction of agriculture yield is the one of the challenging problem in smart farming, we have predicted the yield of rice in the state of Kerala, India with the help of Machine Learning by considering the soil properties, micro climatic condition and area of the rice. Here we have used Decision Tree Regression, Random Forest Regression, Linear Regression, K Nearest Neighbour Regression, Xgboost Regression and Support Vector Regression algorithms in order to predict the rice yield. From the experiments we got KNN regression to be the best with 98.77% accuracy.


2020 ◽  
Vol 25 (1) ◽  
pp. 24-38
Author(s):  
Eka Patriya

Saham adalah instrumen pasar keuangan yang banyak dipilih oleh investor sebagai alternatif sumber keuangan, akan tetapi saham yang diperjual belikan di pasar keuangan sering mengalami fluktuasi harga (naik dan turun) yang tinggi. Para investor berpeluang tidak hanya mendapat keuntungan, tetapi juga dapat mengalami kerugian di masa mendatang. Salah satu indikator yang perlu diperhatikan oleh investor dalam berinvestasi saham adalah pergerakan Indeks Harga Saham Gabungan (IHSG). Tindakan dalam menganalisa IHSG merupakan hal yang penting dilakukan oleh investor dengan tujuan untuk menemukan suatu trend atau pola yang mungkin berulang dari pergerakan harga saham masa lalu, sehingga dapat digunakan untuk memprediksi pergerakan harga saham di masa mendatang. Salah satu metode yang dapat digunakan untuk memprediksi pergerakan harga saham secara akurat adalah machine learning. Pada penelitian ini dibuat sebuah model prediksi harga penutupan IHSG menggunakan algoritma Support Vector Regression (SVR) yang menghasilkan kemampuan prediksi dan generalisasi yang baik dengan nilai RMSE training dan testing sebesar 14.334 dan 20.281, serta MAPE training dan testing sebesar 0.211% dan 0.251%. Hasil penelitian ini diharapkan dapat membantu para investor dalam mengambil keputusan untuk menyusun strategi investasi saham.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 241
Author(s):  
Asish Saha ◽  
Subodh Chandra Pal ◽  
Alireza Arabameri ◽  
Thomas Blaschke ◽  
Somayeh Panahi ◽  
...  

Recurrent floods are one of the major global threats among people, particularly in developing countries like India, as this nation has a tropical monsoon type of climate. Therefore, flood susceptibility (FS) mapping is indeed necessary to overcome this type of natural hazard phenomena. With this in mind, we evaluated the prediction performance of FS mapping in the Koiya River basin, Eastern India. The present research work was done through preparation of a sophisticated flood inventory map; eight flood conditioning variables were selected based on the topography and hydro-climatological condition, and by applying the novel ensemble approach of hyperpipes (HP) and support vector regression (SVR) machine learning (ML) algorithms. The ensemble approach of HP-SVR was also compared with the stand-alone ML algorithms of HP and SVR. In relative importance of variables, distance to river was the most dominant factor for flood occurrences followed by rainfall, land use land cover (LULC), and normalized difference vegetation index (NDVI). The validation and accuracy assessment of FS maps was done through five popular statistical methods. The result of accuracy evaluation showed that the ensemble approach is the most optimal model (AUC = 0.915, sensitivity = 0.932, specificity = 0.902, accuracy = 0.928 and Kappa = 0.835) in FS assessment, followed by HP (AUC = 0.885) and SVR (AUC = 0.871).


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Emmanuel Adinyira ◽  
Emmanuel Akoi-Gyebi Adjei ◽  
Kofi Agyekum ◽  
Frank Desmond Kofi Fugar

PurposeKnowledge of the effect of various cash-flow factors on expected project profit is important to effectively manage productivity on construction projects. This study was conducted to develop and test the sensitivity of a Machine Learning Support Vector Regression Algorithm (SVRA) to predict construction project profit in Ghana.Design/methodology/approachThe study relied on data from 150 institutional projects executed within the past five years (2014–2018) in developing the model. Eighty percent (80%) of the data from the 150 projects was used at hyperparameter selection and final training phases of the model development and the remaining 20% for model testing. Using MATLAB for Support Vector Regression, the parameters available for tuning were the epsilon values, the kernel scale, the box constraint and standardisations. The sensitivity index was computed to determine the degree to which the independent variables impact the dependent variable.FindingsThe developed model's predictions perfectly fitted the data and explained all the variability of the response data around its mean. Average predictive accuracy of 73.66% was achieved with all the variables on the different projects in validation. The developed SVR model was sensitive to labour and loan.Originality/valueThe developed SVRA combines variation, defective works and labour with other financial constraints, which have been the variables used in previous studies. It will aid contractors in predicting profit on completion at commencement and also provide information on the effect of changes to cash-flow factors on profit.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Lingyu Dong

In recent years, wireless sensor network technology has continued to develop, and it has become one of the research hotspots in the information field. People have higher and higher requirements for the communication rate and network coverage of the communication network, which also makes the problems of limited wireless mobile communication network coverage and insufficient wireless resource utilization efficiency become increasingly prominent. This article is aimed at studying a support vector regression method for long-term prediction in the context of wireless network communication and applying the method to regional economy. This article uses the contrast experiment method and the space occupancy rate algorithm, combined with the vector regression algorithm of machine learning. Research on the laws of machine learning under the premise of less sample data solves the problem of the lack of a unified framework that can be referred to in machine learning with limited samples. The experimental results show that the distance between AP1 and AP2 is 0.4 m, and the distance between AP2 and Client2 is 0.6 m. When BPSK is used for OFDM modulation, 2500 MHz is used as the USRP center frequency, and 0.5 MHz is used as the USRP bandwidth; AP1 can send data packets. The length is 100 bytes, the number of sent data packets is 100, the gain of Client2 is 0-38, the receiving gain of AP2 is 0, and the receiving gain of AP1 is 19. The support vector regression method based on wireless network communication for regional economic mid- and long-term predictions was completed well.


Author(s):  
KM Jyoti Rani

Diabetes is a chronic disease with the potential to cause a worldwide health care crisis. According to International Diabetes Federation 382 million people are living with diabetes across the whole world. By 2035, this will be doubled as 592 million. Diabetes is a disease caused due to the increase level of blood glucose. This high blood glucose produces the symptoms of frequent urination, increased thirst, and increased hunger. Diabetes is a one of the leading cause of blindness, kidney failure, amputations, heart failure and stroke. When we eat, our body turns food into sugars, or glucose. At that point, our pancreas is supposed to release insulin. Insulin serves as a key to open our cells, to allow the glucose to enter and allow us to use the glucose for energy. But with diabetes, this system does not work. Type 1 and type 2 diabetes are the most common forms of the disease, but there are also other kinds, such as gestational diabetes, which occurs during pregnancy, as well as other forms. Machine learning is an emerging scientific field in data science dealing with the ways in which machines learn from experience. The aim of this project is to develop a system which can perform early prediction of diabetes for a patient with a higher accuracy by combining the results of different machine learning techniques. The algorithms like K nearest neighbour, Logistic Regression, Random forest, Support vector machine and Decision tree are used. The accuracy of the model using each of the algorithms is calculated. Then the one with a good accuracy is taken as the model for predicting the diabetes.


2020 ◽  
Author(s):  
Castro Mayleen Dorcas Bondoc ◽  
Tumibay Gilbert Malawit

Today many schools, universities and institutions recognize the necessity and importance of using Learning Management Systems (LMS) as part of their educational services. This research work has applied LMS in the teaching and learning process of Bulacan State University (BulSU) Graduate School (GS) Program that enhances the face-to-face instruction with online components. The researchers uses an LMS that provides educators a platform that can motivate and engage students to new educational environment through manage online classes. The LMS allows educators to distribute information, manage learning materials, assignments, quizzes, and communications. Aside from the basic functions of the LMS, the researchers uses Machine Learning (ML) Algorithms applying Support Vector Machine (SVM) that will classify and identify the best related videos per topic. SVM is a supervised machine learning algorithm that analyzes data for classification and regression analysis by Maity [1]. The results of this study showed that integration of video tutorials in LMS can significantly contribute knowledge and skills in the learning process of the students.


Author(s):  
Vijender Kumar Solanki ◽  
Nguyen Ha Huy Cuong ◽  
Zonghyu (Joan) Lu

The machine learning is the emerging research domain, from which number of emerging trends are available, among them opinion mining is the one technology attraction through which the we could get analysis of the interested domain or we can say about the review from the customer towards any product or we can say any upcoming trending information. These two are the emerging words and we can say it's the buzz word in the information technology. As you will see that its widely use by the corporate sector to uplift the business next level. Before two decade you will not read any words e.g., Opinion mining or Sentiment analysis, but in the last two decade these words have given a new life to information technology domain as well as to the business. The important question which runs in the mind is why use sentiment analysis or opinion mining. The information technology has given number of new programming languages, new innovation and within that the data mining has given this trends to the users. The chapter is covering the three major concept's which comes under the machine learning e.g., Decision tree, Bayesian network and Support vector machine. The chapter is describing the basic inputs, and how it helps in supporting stakeholders by adopting these technologies.


Sign in / Sign up

Export Citation Format

Share Document