scholarly journals Shallow Geothermal Potential Impact on the Energy Transition. A Case Study Region of Murcia, Spain

2020 ◽  
Author(s):  
Adela Ramos-Escudero ◽  
Isabel C. Gil-Garcia ◽  
M. Socorro Garcia-Cascales ◽  
Angel Molina-Garcia

Nowadays, it can be assured that climate change represents an environmental danger for the planet with irreparable and unpredictable consequences in case both gas emissions as well as fossil fuel dependency does not go down. Population growth and its increasingly concentration in the cities turn these areas into a major consumer of energy, mainly due to the residential and service sector in order to meet the heating and cooling demand. In this scenario of taking advanced of renewable local resources shallow geothermal energy is presented as a renewable resource that can contribute to meet this demand with high energy and gas emissions savings. In this context, this work shows the art-of-state of the energy transition to a renewable energy society in Spain by means of the use of shallow geothermal energy. It proposes a procedure to transform the current fossil fuel consumption into renewable heating and cooling by the use of Ground Source Heat Pumps (GSHP). The methodology used is based on Geographical Information Systems (GIS) and is applied in Murcia Region, Spain. Positive results concerning gas savings emissions are expected converting shallow geothermal energy as an energy transition ally.

Author(s):  
Juan C. Santamarta ◽  
Alejandro García-Gil ◽  
María del Cristo Expósito ◽  
Elías Casañas ◽  
Noelia Cruz-Pérez ◽  
...  

Author(s):  
Abeer Osama Radwan

Nowadays global warming and thermal islands in modern cities are spending much energy on heating and cooling spaces. Geothermal energy considered a renewable energy technology for space heating and cooling. The ground source heat pumps (GSHPs) are increasingly interested in their expressive potential to reduce fossil fuel consumption and hence reduce greenhouse gases. Geothermal energy used for both electricity generation and direct use, depending on the temperature and the chemistry of the resources. Recently, direct utilization has varied significantly, and there are several methods available for temperatures typically ranging from 4°C up to 80°C. (Lund J.W., 2012). This paper presents a comprehensive literature-based review of ground source heat pump technology, cooling, and heating applications buildings to achieve precisely human thermal comfort. Subsequently, propose the influence factors of the system components that would undoubtedly reflect on the optimal design of the building. As a result, achieve precisely an integrated building.


Author(s):  
M. Ouzzane ◽  
M. T. Naqash ◽  
O. Harireche

A large part of the total energy consumption in buildings in the Kingdom of Saudi Arabia (K.S.A.), is devoted to air cooling. This leads to high electricity costs for residents and a high amount of equivalent CO2 emissions. The work presented in this paper aims at evaluating and applying shallow geothermal energy for cooling and heating to reduce cost and environmental issues in the Kingdom. The system is based on the earth-air heat exchanger (EAHE) equipped with an air circulation fan. In this study, six cities have been selected; Madinah city, where our university is located, and five other cities representing five different climatic zones. A new parameter called “geothermal percentage” is proposed to calculate the ratio of geothermal energy to the cooling/heating total load. It has been shown that the proposed system covers part of the cooling load and the total heating needs for almost all the country’s territory. However, both heating and cooling needs can be fulfilled by the EAHE for few cities such as Guriiat and Khamis, characterized by a moderate climate.


2021 ◽  
Author(s):  
Shuang Chen ◽  
Jakob Randow ◽  
Katrin Lubashevsky ◽  
Steve Thiel ◽  
Tom Reinhardt ◽  
...  

<p>Nowadays, utilizing shallow geothermal energy for heating and cooling buildings has received increased interest in the energy market. Among different technologies, large borehole heat exchanger (BHE) arrays are widely employed to supply heat to various types of buildings and districts. Recently, a 16-BHE array was constructed to extract shallow geothermal energy to provide heat to the newly-developed public building in Berlin. According to the previous geological survey, different non-homogeneous sedimentary layers exist in the subsurface, with variating groundwater permeabilities and thermal parameters. To estimate the performance of the BHE array system, and its sensitivity to different subsurface conditions, as well as to determine its thermal impact to the surrounding area, a comprehensive 3D numerical model has been set up according to the Berlin BHE array project. The model is simulated for 25 years with two finite element simulators, the open source code software OpenGeoSys (OGS) and the well-known commercial software FEFLOW. In the model, an annual thermal load curve is assigned to each BHE according to the real monthly heating demand. Although the way of the implementing parameters in the two programs differs from each other and some assumptions had to be made in the model comparison, the comparison result shows that both OpenGeoSys and FEFLOW produce in good agreement. Different parameters, e.g. the Darcy velocity, the thermal dispersivity of the aquifer, the surface temperature and the geothermal heat flux are investigated with respect to their impact on the underground and BHE circulation temperature. At last, the computed underground temperature and the brine fluid temperature evolution from OGS is benchmarked with the results from the model simulated in FEFLOW. The numerical experiments show that the the ground water field has the strongest influence on the brine fluid temperature within the BHEs. When the thermal dispersivity of the aquifer is considered, the mixing effect in the aquifer leads to a higher brine fluid temperature in the BHE, indicating a better thermal recharge of the system.</p>


2014 ◽  
Vol 126 (2) ◽  
pp. 25
Author(s):  
Ian Johnston

Below a depth of around 5 to 8 metres below the surface, the ground displays a temperature which is effectively constant and a degree or two above the weighted mean annual air temperature at that particular location. In Melbourne, the ground temperature at this depth is around 18°C with temperatures at shallower depths varying according the season. Further north, these constant temperatures increase a little; while for more southern latitudes, the temperatures are a few degrees cooler. Shallow source geothermal energy (also referred to as direct geothermal energy, ground energy using ground source heat pumps and geoexchange) uses the ground and its temperatures to depths of a few tens of metres as a heat source in winter and a heat sink in summer for heating and cooling buildings. Fluid (usually water) is circulated through a ground heat exchanger (or GHE, which comprises pipes built into building foundations, or in specifically drilled boreholes or trenches), and back to the surface. In heating mode, heat contained in the circulating fluid is extracted by a ground source heat pump (GSHP) and used to heat the building. The cooled fluid is reinjected into the ground loops to heat up again to complete the cycle. In cooling mode, the system is reversed with heat taken out of the building transferred to the fluid which is injected underground to dump the extra heat to the ground. The cooled fluid then returns to the heat pump to receive more heat from the building.


2021 ◽  
Vol 3 ◽  
Author(s):  
Gülfem Cevheribucak

This paper aims to explore energy insecurity in Turkey at the intersection of environmental sustainability, human security and justice vis-à-vis growing energy demand coupled with greenhouse gas emissions coming from the transport sector. High dependence on fossil fuel imports creates bottlenecks for the economy and require urgent shift to renewable energy sources. Prospects for renewable energy transition are analyzed based on focusing on total final energy consumption by energy and transport sector as well as greenhouse gas emissions. In order to propose holistic clarifications to the triangular problem of high fossil fuel dependence, energy demand increase and greenhouse gas mitigation, sustainable energy transition in road transport is put forward. It is justified based on the share of greenhouse gas emissions originating from road transport sector and high taxation levels that create extra burden on private consumers. Energy transition is conceptualized with the theoretical offerings of sustainability transition literature that point out to socio-technical processes, hence the societal, technological as well as external structural contexts of change. Upon this background, this policy and practice review outlines the current policy instruments in order to highlight the mismatch between policy and practices for just energy transition in conjunction with sustainable mobility in Turkey.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5740
Author(s):  
Adela Ramos-Escudero ◽  
M. Socorro García-Cascales ◽  
Javier F. Urchueguía

In order to boost the use of shallow geothermal energy, reliable and sound information concerning its potential must be provided to the public and energy decision-makers, among others. To this end, we developed a GIS-based methodology that allowed us to estimate the resource, energy, economic and environmental potential of shallow geothermal energy at a regional scale. Our method focuses on closed-loop borehole heat exchanger systems, which are by far the systems that are most utilized for heating and cooling purposes, and whose energy demands are similar throughout the year in the study area applied. The resource was assessed based on the thermal properties from the surface to a depth of 100 m, considering the water saturation grade of the materials. Additionally, climate and building characteristics data were also used as the main input. The G.POT method was used for assessing the annual shallow geothermal resource and for the specific heat extraction (sHe) rate estimation for both heating and, for the first time, for cooling. The method was applied to the Region of Murcia (Spain) and thematic maps were created with the outputting results. They offer insight toward the thermal energy that can be extracted for both heating and cooling in (MWh/year) and (W/m); the technical potential, making a distinction over the climate zones in the region; the cost of the possible ground source heat pump (GSHP) installation, associated payback period and the cost of producing the shallow geothermal energy; and, finally, the GHG emissions savings derived from its usage. The model also output the specific heat extraction rates, which are compared to those from the VDI 4640, which prove to be slightly higher than the previous one.


Author(s):  
Matteo Baralis ◽  
Marco Barla

AbstractShallow geothermal energy systems have the potential to contribute to the decarbonization of heating and cooling demands of buildings. These systems typically present drawbacks as high initial investments and occupancy of wide areas. In this study, a novel energy wall system is proposed to overcome the limitations of conventional geothermal applications in urban areas. The system is characterized by ease of installation, low initial costs and applicability to existing buildings undergoing energy retrofitting. The paper illustrates the implementation of the prototype of such a system to an existing structure in Torino (Italy). An overview of the components is given together with the interpretation of an illustrative test carried out in heating mode. The data from both heating and cooling experimental campaigns allow us to highlight the potential of the proposed technology. The results suggest that an average thermal power of about 17 W per unit area can be exchanged with the ground in heating mode, while an average of 68 W per unit area is exchanged in cooling operations. The negligible impact on the stress–strain state of the wall and the surrounding soil thermal and hygrometric regime is also testified by the results collected. These aspects are associated with a reduced probability of interferences with other installations in highly urbanized areas, easiness of installation and affordable cost.


Sign in / Sign up

Export Citation Format

Share Document