scholarly journals A strain-based investigation of the accuracy of embedded markers used in tracking cadaveric brain motion

2021 ◽  
Author(s):  
Scott Dutrisac ◽  
Blaine Hoshizaki ◽  
Oren E. Petel

Measurements of intracranial brain displacement in cadaveric specimens have been instrumental to the validation finite element (FE) models of brain injury. These data collections have used radiographic and sonomicrometric techniques, requiring the use of tissue-embedded tracking markers; however, marker accuracy has never been adequately characterized. Marker tracking precision has been previously conflated with measurement accuracy, not accounting for changes in the natural responseof surrounding tissues due to marker presence. Non-negligible inertia, high stiffness, and the aspect ratio of markers all contribute to this interference. This work investigated the dynamic coupling between published marker designs (NDTs, Sonomicrometry Crystals, and Tin) and a new elastomeric marker, and a block of tissue simulant subjected to a drop impact. The measured strains were compared to the baseline response of the simulant containing massless markers. The results found notable evidence of interference in simulant strain amplitudes as well as considerable directional bias in the response of some markers. The elastomeric marker was found to have minimal interference in the deformation field. FutureFE model validation will need to account for the considerable interference and directional biases to the natural response of brain tissue in existing cadaveric datasets to maintain confidence in strain predictions.

2013 ◽  
Vol 41 (2) ◽  
pp. 127-151
Author(s):  
Rudolf F. Bauer

ABSTRACT The benefits of a tire's equilibrium profile have been suggested by several authors in the published literature, and mathematical procedures were developed that represented well the behavior of bias ply tires. However, for modern belted radial ply tires, and particularly those with a lower aspect ratio, the tire constructions are much more complicated and pose new problems for a mathematical analysis. Solutions to these problems are presented in this paper, and for a modern radial touring tire the equilibrium profile was calculated together with the mold profile to produce such tires. Some construction modifications were then applied to these tires to render their profiles “nonequilibrium.” Finite element methods were used to analyze for stress concentrations and deformations within all tires that did or did not conform to equilibrium profiles. Finally, tires were built and tested to verify the predictions of these analyses. From the analysis of internal stresses and deformations on inflation and loading and from the actual tire tests, the superior durability of tires with an equilibrium profile was established, and hence it is concluded that an equilibrium profile is a beneficial property of modern belted radial ply tires.


2016 ◽  
Vol 9 (10) ◽  
pp. 3803-3815 ◽  
Author(s):  
Gheorghe-Teodor Bercea ◽  
Andrew T. T. McRae ◽  
David A. Ham ◽  
Lawrence Mitchell ◽  
Florian Rathgeber ◽  
...  

Abstract. We present a generic algorithm for numbering and then efficiently iterating over the data values attached to an extruded mesh. An extruded mesh is formed by replicating an existing mesh, assumed to be unstructured, to form layers of prismatic cells. Applications of extruded meshes include, but are not limited to, the representation of three-dimensional high aspect ratio domains employed by geophysical finite element simulations. These meshes are structured in the extruded direction. The algorithm presented here exploits this structure to avoid the performance penalty traditionally associated with unstructured meshes. We evaluate the implementation of this algorithm in the Firedrake finite element system on a range of low compute intensity operations which constitute worst cases for data layout performance exploration. The experiments show that having structure along the extruded direction enables the cost of the indirect data accesses to be amortized after 10–20 layers as long as the underlying mesh is well ordered. We characterize the resulting spatial and temporal reuse in a representative set of both continuous-Galerkin and discontinuous-Galerkin discretizations. On meshes with realistic numbers of layers the performance achieved is between 70 and 90 % of a theoretical hardware-specific limit.


2011 ◽  
Vol 239-242 ◽  
pp. 2785-2789
Author(s):  
Chao Sun ◽  
Min Song ◽  
Ru Juan Shen ◽  
Yong Du

The effects of SiC fiber shape, aspect ratio and loading direction on the deformation behavior of SiC fiber reinforced Al matrix composites were studied by finite element method using axisymmetric unit cell model. The results showed that the addition of reinforcements will cause constraint on the plastic flow of ductile matrix, and thus result in no-uniform stress distribution. The reinforcement shape has a pronounced effect on the overall plastic deformation of the metal matrix composites. The loading condition will cause different failure mechanisms of composites. Under tensile loading, the stress-bearing ability in the plastic region is increased with the fiber aspect ratio due to the increase in the interface between the reinforcement and matrix and the decrease in the inter-particle space.


2010 ◽  
Vol 77 (6) ◽  
Author(s):  
Min Kyoo Kang ◽  
Rui Huang

A hydrogel consists of a cross-linked polymer network and solvent molecules. Depending on its chemical and mechanical environment, the polymer network may undergo enormous volume change. The present work develops a general formulation based on a variational approach, which leads to a set of governing equations coupling mechanical and chemical equilibrium conditions along with proper boundary conditions. A specific material model is employed in a finite element implementation, for which the nonlinear constitutive behavior is derived from a free energy function, with explicit formula for the true stress and tangent modulus at the current state of deformation and chemical potential. Such implementation enables numerical simulations of hydrogels swelling under various constraints. Several examples are presented, with both homogeneous and inhomogeneous swelling deformation. In particular, the effect of geometric constraint is emphasized for the inhomogeneous swelling of surface-attached hydrogel lines of rectangular cross sections, which depends on the width-to-height aspect ratio of the line. The present numerical simulations show that, beyond a critical aspect ratio, creaselike surface instability occurs upon swelling.


1996 ◽  
Vol 436 ◽  
Author(s):  
R. P. Vinci ◽  
J. C. Bravman

AbstractWe have modeled the effects of grain aspect ratio on strain energy density in (100)-oriented grains in a (111)-textured Cu film on a Si substrate. Minimization of surface energy, interface energy, and strain energy density (SED) drives preferential growth of grains of certain crystallographic orientations in thin films. Under conditions in which the SED driving force exceeds the surface- and interface-energy driving forces, Cu films develop abnormally large (100) oriented grains during annealing. In the elastic regime the SED differences between the (100) grains and the film average arise from elastic anisotropy. Previous analyses indicate that several factors (e.g. elimination of grain boundaries during grain growth) may alter the magnitude of the SED driving force. We demonstrate, using finite element modeling of a single columnar (100) grain in a (111) film, that changes in grain aspect ratio can significantly affect the SED driving force. A minimum SED driving force is found for (100) Cu grains with diameters on the order of the film thickness. In the absence of other stagnation mechanisms, such behavior could cause small grains to grow abnormally and then stagnate while large grains continue to grow. This would lead to a bimodal grain size distribution in the (100) grains preferred by the SED minimization.


2014 ◽  
Vol 716-717 ◽  
pp. 1643-1647
Author(s):  
Yu Liang Luan ◽  
Wei Bin Rong ◽  
Li Ning Sun

In order to achieve greater workspace motion, it’s designed a high aspect ratio 3-PPSR flexible parallel robot, driven by a piezoelectric motor, connected by flexible hinges, which has the advantages of simple structure, non singular, seamless, high motion precision. Because of the stiffness of the system directly affecting the motion accuracy, load bearing performance, according to the characteristics of high aspect ratio flexible hinge, It’s established the mathematical model of flexible hinge through finite element method. Using method of integral stiffness, conbined coordination equation with force balance equation, the flexible stiffness model of system is obtained. Finally, through using Ansys, it’s confirmed the validity of the theoretical model by comparing of the theoretical stiffness model results with the finite element analysis of the model results, to provide a reliable guarantee for optimization and analysis of kinematics and dynamics of flexible parallel robot.


Author(s):  
Yuhui Huang ◽  
Chengcheng Wang ◽  
Shan-Tung Tu ◽  
Fu-Zhen Xuan ◽  
Takamoto Itoh

Finite element analysis is adopted to study the stress concentration of pit area under tension-torsion loading. The stress concentration factors under regular evolution and irregular evolution of pits are investigated by conducting a series of three-dimensional semi-elliptical pitted models. Based on the finite element analysis, it can be concluded that pit aspect ratio (a/2c) is a significant parameter affecting stress concentration factor (SCF) for regular evolution pits. Pits, having higher aspect ratio, are very dangerous form and can cause significant reduction in the load carrying capacity. When local dissolution occurs in the pitting area, SCF will have a sharp increase, it is more probable for a crack to initiate from these areas compared with pits for regular evolution. Furthermore, local dissolution coefficient is proposed to study effect of local dissolution within the pit on SCF.


Author(s):  
Frank G. Lee ◽  
M. David Hanna

A parametric study was conducted to determine how the design features and forming parameters affect part thinning and forming time in the Superplastic Forming Process (SPF). Explicit formulas, describing the maximum percent thinning and the forming time for channel parts formed by the SPF process as a function of eight designs and forming parameters, were derived. The formulas are good approximations of those obtained by finite element simulation analyses and physical experiments. Thinning of the channels was influenced most by the component aspect ratio (height versus width) and entry radius at top of the channel forming tool. The forming time was most influenced by strain rate, aspect ratio and tool bottom radius. A design domain can be established to avoid excessive thinning. The Taguchi design-of-experiment method was applied to select parameter combinations, and the MARC finite element code was used to conduct sectional analysis for various combinations.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 977
Author(s):  
Ilaria Cesini ◽  
Magdalena Kowalczyk ◽  
Alessandro Lucantonio ◽  
Giacomo D’Alesio ◽  
Pramod Kumar ◽  
...  

Hydrothermal growth of ZnO nanorods has been widely used for the development of tactile sensors, with the aid of ZnO seed layers, favoring the growth of dense and vertically aligned nanorods. However, seed layers represent an additional fabrication step in the sensor design. In this study, a seedless hydrothermal growth of ZnO nanorods was carried out on Au-coated Si and polyimide substrates. The effects of both the Au morphology and the growth temperature on the characteristics of the nanorods were investigated, finding that smaller Au grains produced tilted rods, while larger grains provided vertical rods. Highly dense and high-aspect-ratio nanorods with hexagonal prismatic shape were obtained at 75 °C and 85 °C, while pyramid-like rods were grown when the temperature was set to 95 °C. Finite-element simulations demonstrated that prismatic rods produce higher voltage responses than the pyramid-shaped ones. A tactile sensor, with an active area of 1 cm2, was fabricated on flexible polyimide substrate and embedding the nanorods forest in a polydimethylsiloxane matrix as a separation layer between the bottom and the top Au electrodes. The prototype showed clear responses upon applied loads of 2–4 N and vibrations over frequencies in the range of 20–800 Hz.


Sign in / Sign up

Export Citation Format

Share Document