scholarly journals Additive Manufacturing of Wholly Thermoplastic Composites

2021 ◽  
Author(s):  
Tianran Chen

TLCP reinforced composite has been widely used in different application due to their lightweight, high strength and stiffness, chemical resistance and great recyclability. In this work, TLCP reinforced nylon composite has been developed for using in 3D printing process. TLCP reinforced nylon filaments were generated using dual extrusion, a process by which two single crew extruders are used to individually process two plastics at their optimal processing temperature and pump them directly into a T junction in which a reinforcement material is dispersed throughout a matrix material via a static mixer, then extruded out of a nozzle and cooled in a water bath. Different pumping speeds were controlled via individual gear pumps connected to each extruder. Pump speeds were adjusted to produce 20 wt% TLCP/nylon composite. The filament was then collected and prepared for use in 3D printing.

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1235
Author(s):  
Bidita Salahuddin ◽  
Rahim Mutlu ◽  
Tajwar A. Baigh ◽  
Mohammed N. Alghamdi ◽  
Shazed Aziz

Passive vibration control using polymer composites has been extensively investigated by the engineering community. In this paper, a new kind of vibration dampening polymer composite was developed where oriented nylon 6 fibres were used as the reinforcement, and 3D printed unoriented nylon 6 was used as the matrix material. The shape of the reinforcing fibres was modified to a coiled structure which transformed the fibres into a smart thermoresponsive actuator. This novel self-reinforced composite was of high mechanical robustness and its efficacy was demonstrated as an active dampening system for oscillatory vibration of a heated vibrating system. The blocking force generated within the reinforcing coiled actuator was responsible for dissipating vibration energy and increase the magnitude of the damping factor compared to samples made of non-reinforced nylon 6. Further study shows that the appropriate annealing of coiled actuators provides an enhanced dampening capability to the composite structure. The extent of crystallinity of the reinforcing actuators is found to directly influence the vibration dampening capacity.


2019 ◽  
Vol 49 (1) ◽  
pp. 327-359 ◽  
Author(s):  
Alan Taub ◽  
Emmanuel De Moor ◽  
Alan Luo ◽  
David K. Matlock ◽  
John G. Speer ◽  
...  

Reducing the weight of automobiles is a major contributor to increased fuel economy. The baseline materials for vehicle construction, low-carbon steel and cast iron, are being replaced by materials with higher specific strength and stiffness: advanced high-strength steels, aluminum, magnesium, and polymer composites. The key challenge is to reduce the cost of manufacturing structures with these new materials. Maximizing the weight reduction requires optimized designs utilizing multimaterials in various forms. This use of mixed materials presents additional challenges in joining and preventing galvanic corrosion.


2015 ◽  
Vol 1101 ◽  
pp. 79-82
Author(s):  
B.C. Suresh ◽  
S.B. Arun

Now a day’s composite materials are taking very important role in industrial growth. Composite materials are widely used in Automobiles, aerospace, submarine and also in other major fields, due to their special characteristics like light weight, high strength, stiffness, corrosion resistance. The determination of Coefficient of Thermal Expansion (CTE) of MMCs is important to aid its usage in high temperature environment as in the case of automobile combustion chamber. In these applications the stability of the composites over a long period of operation is a critical design considerationPresent work deals with the thermal property evaluation of the Al alloy / alumina metal matrix composite developed using the Stir Casting with chilling route technique. LM 26 Al alloy is being selected as the matrix material as it is a potential alloy for automotive piston applications. Al alloy / alumina MMCs was cast under end chilling technique by dispersing the reinforcement from 6 to 12 wt% the steps of 3% to study the variation in its thermal properties. At the same time chill material is also changed (Copper and MS) for different composition of MMCs cast to study the thermal behavior variations. After casting the required MMC, test specimens were prepared as per the standards to conduct thermal conductivity (K) tests and coefficient of thermal expansion (CTE) tests. Above tests were repeated for different composites containing different weight % of dispersed cast using different chills.


Author(s):  
Karan Mankotia ◽  
Jasgurpreet Singh Chohan ◽  
Rupinder Singh

2017 ◽  
Vol 32 (8) ◽  
pp. 837 ◽  
Author(s):  
XIN Chen ◽  
QI Xin ◽  
ZHU Min ◽  
ZHAO Shi-Chang ◽  
ZHU Yu-Fang

Sign in / Sign up

Export Citation Format

Share Document