scholarly journals Automatic Target Recognition (ATR) from SAR Imaginary by Using Machine Learning Techniques

2020 ◽  
Author(s):  
Umut Ozkaya

Automatic Target Recognition (ATR) in Synthetic aperture radar (SAR) images becomes a very challenging problem owing to containing high level noise. In this study, a machine learning-based method is proposed to detect different moving and stationary targets using SAR images. First Order Statistical (FOS) features were obtained from Fast Fourier Transform (FFT), Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) on gray level SAR images. Gray Level Co-occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM) and Gray Level Size Zone Matrix (GLSZM) algorithms are also used. These features are provided as input for the training and testing stage Support Vector Machine (SVM) model with Gaussian kernels. 4-fold cross-validations were implemented in performance evaluation. Obtained results showed that GLCM + SVM algorithm is the best model with 95.26% accuracy. This proposed method shows that moving and stationary targets in MSTAR database could be recognized with high performance.

Proceedings ◽  
2020 ◽  
Vol 54 (1) ◽  
pp. 53
Author(s):  
Francisco Laport ◽  
Paula M. Castro ◽  
Adriana Dapena ◽  
Francisco J. Vazquez-Araujo ◽  
Daniel Iglesia

A comparison of different machine learning techniques for eye state identification through Electroencephalography (EEG) signals is presented in this paper. (1) Background: We extend our previous work by studying several techniques for the extraction of the features corresponding to the mental states of open and closed eyes and their subsequent classification; (2) Methods: A prototype developed by the authors is used to capture the brain signals. We consider the Discrete Fourier Transform (DFT) and the Discrete Wavelet Transform (DWT) for feature extraction; Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) for state classification; and Independent Component Analysis (ICA) for preprocessing the data; (3) Results: The results obtained from some subjects show the good performance of the proposed methods; and (4) Conclusion: The combination of several techniques allows us to obtain a high accuracy of eye identification.


2020 ◽  
Author(s):  
Hüseyin Duysak ◽  
Umut Ozkaya ◽  
Enes Yiğit

In this study, radar signals were analyzed to classify grain surface types by using machine learning methods. Radar backscatter signals were recorded using a vector network analyzer between 18-40 GHz. A total of 5681 measurements of A scan signals were collected. The proposed method framework consists of two parts. First Order Statistical features are obtained by applying Fast Fourier Transform (FFT), Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT) on backscatter signals in the first part of the framework. Classification process of these features was carried out with Support Vector Machine (SVM). In the second part of the proposed framework, two dimensional matrices in complex form were obtained by applying Short Time Fourier Transform (STFT) on the signals. Gray-Level Co-Occurrence Matrix (GLCM) and Gray-Level Run-Length Matrix (GLRLM) were obtained and feature extraction process was completed. Classification process was carried out with DVM. 10-k cross validation was applied. The highest performance was achieved with STFT+GLCM+SVM.


2018 ◽  
Vol 10 (11) ◽  
pp. 1799 ◽  
Author(s):  
Jeong-In Hwang ◽  
Hyung-Sup Jung

In this paper, an automatic ship detection method using the artificial neural network (ANN) and support vector machine (SVM) from X-band SAR satellite images is proposed. When using machine learning techniques, the most important points to consider are (i) defining the proper input neurons and (ii) selecting the correct training data. We focused on generating two optimal input data neurons that (i) strengthened ship targets and (ii) mitigated noise effects by image processing techniques, including median filtering, multi-looking, etc. The median filter and multi-look operations were used to reduce the background noise, and the median filter operation was also used to remove ships in an image in order to maximize the difference between the pixel values of ships and the sea. Through the root-mean-square difference calculation, most ship targets, even including small ships, were emphasized in the images. We tested the performance of the proposed method using X-band high-resolution SAR images including COSMO-SkyMed, KOMPSAT-5, and TerraSAR-X images. An intensity difference map and a texture difference map were extracted from the X-band SAR single-look complex (SLC) images, and then, the maps were used as input neurons for the ANN and SVM machine learning techniques. Finally, we created ship-probability maps through the machine learning techniques. To validate the ANN and SVM results, optimal threshold values were obtained by using the statistical approach and then used to identify ships from the ship-probability maps. Consequently, the level of recall achieved was greater than 90% in most cases. This means that the proposed method enables the detection of most ship targets from X-band SAR images with a reduced number of false detections from negative effects.


2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Author(s):  
Anantvir Singh Romana

Accurate diagnostic detection of the disease in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Naïve bayes, J48 Decision Tree and neural network classifiers breast cancer and diabetes datsets.


2020 ◽  
Author(s):  
Azhagiya Singam Ettayapuram Ramaprasad ◽  
Phum Tachachartvanich ◽  
Denis Fourches ◽  
Anatoly Soshilov ◽  
Jennifer C.Y. Hsieh ◽  
...  

Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) pose a substantial threat as endocrine disruptors, and thus early identification of those that may interact with steroid hormone receptors, such as the androgen receptor (AR), is critical. In this study we screened 5,206 PFASs from the CompTox database against the different binding sites on the AR using both molecular docking and machine learning techniques. We developed support vector machine models trained on Tox21 data to classify the active and inactive PFASs for AR using different chemical fingerprints as features. The maximum accuracy was 95.01% and Matthew’s correlation coefficient (MCC) was 0.76 respectively, based on MACCS fingerprints (MACCSFP). The combination of docking-based screening and machine learning models identified 29 PFASs that have strong potential for activity against the AR and should be considered priority chemicals for biological toxicity testing.


2020 ◽  
Author(s):  
Nalika Ulapane ◽  
Karthick Thiyagarajan ◽  
sarath kodagoda

<div>Classification has become a vital task in modern machine learning and Artificial Intelligence applications, including smart sensing. Numerous machine learning techniques are available to perform classification. Similarly, numerous practices, such as feature selection (i.e., selection of a subset of descriptor variables that optimally describe the output), are available to improve classifier performance. In this paper, we consider the case of a given supervised learning classification task that has to be performed making use of continuous-valued features. It is assumed that an optimal subset of features has already been selected. Therefore, no further feature reduction, or feature addition, is to be carried out. Then, we attempt to improve the classification performance by passing the given feature set through a transformation that produces a new feature set which we have named the “Binary Spectrum”. Via a case study example done on some Pulsed Eddy Current sensor data captured from an infrastructure monitoring task, we demonstrate how the classification accuracy of a Support Vector Machine (SVM) classifier increases through the use of this Binary Spectrum feature, indicating the feature transformation’s potential for broader usage.</div><div><br></div>


2020 ◽  
Vol 21 ◽  
Author(s):  
Sukanya Panja ◽  
Sarra Rahem ◽  
Cassandra J. Chu ◽  
Antonina Mitrofanova

Background: In recent years, the availability of high throughput technologies, establishment of large molecular patient data repositories, and advancement in computing power and storage have allowed elucidation of complex mechanisms implicated in therapeutic response in cancer patients. The breadth and depth of such data, alongside experimental noise and missing values, requires a sophisticated human-machine interaction that would allow effective learning from complex data and accurate forecasting of future outcomes, ideally embedded in the core of machine learning design. Objective: In this review, we will discuss machine learning techniques utilized for modeling of treatment response in cancer, including Random Forests, support vector machines, neural networks, and linear and logistic regression. We will overview their mathematical foundations and discuss their limitations and alternative approaches all in light of their application to therapeutic response modeling in cancer. Conclusion: We hypothesize that the increase in the number of patient profiles and potential temporal monitoring of patient data will define even more complex techniques, such as deep learning and causal analysis, as central players in therapeutic response modeling.


Author(s):  
Amandeep Kaur ◽  
Sushma Jain ◽  
Shivani Goel ◽  
Gaurav Dhiman

Context: Code smells are symptoms, that something may be wrong in software systems that can cause complications in maintaining software quality. In literature, there exists many code smells and their identification is far from trivial. Thus, several techniques have also been proposed to automate code smell detection in order to improve software quality. Objective: This paper presents an up-to-date review of simple and hybrid machine learning based code smell detection techniques and tools. Methods: We collected all the relevant research published in this field till 2020. We extracted the data from those articles and classified them into two major categories. In addition, we compared the selected studies based on several aspects like, code smells, machine learning techniques, datasets, programming languages used by datasets, dataset size, evaluation approach, and statistical testing. Results: Majority of empirical studies have proposed machine- learning based code smell detection tools. Support vector machine and decision tree algorithms are frequently used by the researchers. Along with this, a major proportion of research is conducted on Open Source Softwares (OSS) such as, Xerces, Gantt Project and ArgoUml. Furthermore, researchers paid more attention towards Feature Envy and Long Method code smells. Conclusion: We identified several areas of open research like, need of code smell detection techniques using hybrid approaches, need of validation employing industrial datasets, etc.


Sign in / Sign up

Export Citation Format

Share Document