scholarly journals Genetic code: Chemical Distinctions of Protein Amino Acids

2017 ◽  
Author(s):  
Miloje M. Rakočević

In the work it is shown that 20 protein amino acids ("the canonical amino acids" within the genetic code) appear to be a whole and very symmetrical system, in many ways, all based on strict chemical distinctions from the aspect of their similarity, complexity, stereochemical and diversity types. By this, all distinctions are accompanied by specific arithmetical and algebraic regularities, including the existence of amino acid ordinal numbers from 1 to 20. The classification of amino acids into two decades (1-10 and 11-20) appears to be in a strict correspondence with the atom number balances. From the presented "ideal" and "intelligent" structures and arrangements follow the conclusions that the genetic code was complete even in prebiotic conditions (as a set of 20 canonical amino acids and the set of 2+2 pyrimidine / purine canonical bases, respectively); and the "evolution" of the genetic code can only mean the degree of freedom of standard genetic code, i.e. the possible exceptions and deviations from the standard genetic code.

2017 ◽  
Author(s):  
Miloje M. Rakocevic

In the work it is shown that 20 protein amino acids ("the canonical amino acids" within the genetic code) appear to be a whole and very symmetrical system, in many ways, all based on strict chemical distinctions from the aspect of their similarity, complexity, stereochemical and diversity types. By this, all distinctions are accompanied by specific arithmetical and algebraic regularities, including the existence of amino acid ordinal numbers from 1 to 20. The classification of amino acids into two decades (1-10 and 11-20) appears to be in a strict correspondence with the atom number balances. From the presented "ideal" and "intelligent" structures and arrangements follow the conclusions that the genetic code was complete even in prebiotic conditions (as a set of 20 canonical amino acids and the set of 2+2 pyrimidine / purine canonical bases, respectively); and the notion "evolution" of the genetic code can only mean the degree of freedom of standard genetic code, i.e. the possible exceptions and deviations from the standard genetic code. [This is the second version with minimal interventions in the text. In addition, one passage was added in front of the second star, with quoting of T. Jukes. Added is Remark 4 and a more adequate shading in the Table inside Box 2.]


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 409
Author(s):  
Tamara L. Hendrickson ◽  
Whitney N. Wood ◽  
Udumbara M. Rathnayake

The twenty amino acids in the standard genetic code were fixed prior to the last universal common ancestor (LUCA). Factors that guided this selection included establishment of pathways for their metabolic synthesis and the concomitant fixation of substrate specificities in the emerging aminoacyl-tRNA synthetases (aaRSs). In this conceptual paper, we propose that the chemical reactivity of some amino acid side chains (e.g., lysine, cysteine, homocysteine, ornithine, homoserine, and selenocysteine) delayed or prohibited the emergence of the corresponding aaRSs and helped define the amino acids in the standard genetic code. We also consider the possibility that amino acid chemistry delayed the emergence of the glutaminyl- and asparaginyl-tRNA synthetases, neither of which are ubiquitous in extant organisms. We argue that fundamental chemical principles played critical roles in fixation of some aspects of the genetic code pre- and post-LUCA.


Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 773
Author(s):  
Ádám Radványi ◽  
Ádám Kun

The genetic code was evolved, to some extent, to minimize the effects of mutations. The effects of mutations depend on the amino acid repertoire, the structure of the genetic code and frequencies of amino acids in proteomes. The amino acid compositions of proteins and corresponding codon usages are still under selection, which allows us to ask what kind of environment the standard genetic code is adapted to. Using simple computational models and comprehensive datasets comprising genomic and environmental data from all three domains of Life, we estimate the expected severity of non-synonymous genomic mutations in proteins, measured by the change in amino acid physicochemical properties. We show that the fidelity in these physicochemical properties is expected to deteriorate with extremophilic codon usages, especially in thermophiles. These findings suggest that the genetic code performs better under non-extremophilic conditions, which not only explains the low substitution rates encountered in halophiles and thermophiles but the revealed relationship between the genetic code and habitat allows us to ponder on earlier phases in the history of Life.


Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 975
Author(s):  
Alexander Nesterov-Mueller ◽  
Roman Popov

Combinatorial fusion cascade was proposed as a transition stage between prebiotic chemistry and early forms of life. The combinatorial fusion cascade consists of three stages: eight initial complimentary pairs of amino acids, four protocodes, and the standard genetic code. The initial complimentary pairs and the protocodes are divided into dominant and recessive entities. The transitions between these stages obey the same combinatorial fusion rules for all amino acids. The combinatorial fusion cascade mathematically describes the codon assignments in the standard genetic code. It explains the availability of amino acids with the even and odd numbers of codons, the appearance of stop codons, inclusion of novel canonical amino acids, exceptional high numbers of codons for amino acids arginine, leucine, and serine, and the temporal order of amino acid inclusion into the genetic code. The temporal order of amino acids within the cascade is congruent with the consensus temporal order previously derived from the similarities between the available hypotheses. The control over the combinatorial fusion cascades would open the road for a novel technology to develop artificial microorganisms.


2021 ◽  
Author(s):  
Miloje M. Rakočević

The idea of this review paper is as follows. If it can be shown (and it can!) that the pairing of protein amino acids is system-directed (determined), then the hypothesis of a prebiotically determined genetic code (Rakočević, 2004a) gets its full meaning. The hypothesis is supported by the fact that all these pairings come to the fore primarily through classes and subclasses of amino acid molecules. What is, however, unexpected and even unbelievable from the point of view of current science is the fact that the quantities, i.e. number of atoms (in a direct or indirect relation to the number of nucleons), in these classes and subclasses, are determined by Gauss’ number 51 (51 = 3 x 17), or Gauss’ sequence: 51 ± 10, 51 ± 20, 51 ± 30, 51 ± 40 and 51 ± 50; also by Dürer’s number 34 (34 = 2 x 17), even more either by its double value, 68; or by Dürer’s sequences: 34 ± 10, 34 ± 5 and 68 ± 10, 68 ± 5. Since the hypothesis refers to constituents – amino acids and nucleotides – it follows that in terms of the type and number of constituents, it makes no sense to talk about evolution of GC, but only about its generating. [Generated, not degenerated code!] It makes sense to talk about the evolution of the genetic code only from the "moment" when the resulting peptide and nucleotide chains enter into chemical reactions and interactions; although even then it can be said that this is just a second phase of GC generation.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 997
Author(s):  
Marco V. José ◽  
Gabriel S. Zamudio

The standard genetic code (SGC) is a mapping between the 64 possible arrangements of the four RNA nucleotides (C, A, U, G) into triplets or codons, where 61 codons are assigned to a specific amino acid and the other three are stop codons for terminating protein synthesis. Aminoacyl-tRNA synthetases (aaRSs) are responsible for implementing the SGC by specifically amino-acylating only its cognate transfer RNA (tRNA), thereby linking an amino acid with its corresponding anticodon triplets. tRNAs molecules bind each codon with its anticodon. To understand the meaning of symmetrical/asymmetrical properties of the SGC, we designed synthetic genetic codes with known symmetries and with the same degeneracy of the SGC. We determined their impact on the substitution rates for each amino acid under a neutral model of protein evolution. We prove that the phenotypic graphs of the SGC for codons and anticodons for all the possible arrangements of nucleotides are asymmetric and the amino acids do not form orbits. In the symmetrical synthetic codes, the amino acids are grouped according to their codonicity, this is the number of triplets encoding a given amino acid. Both the SGC and symmetrical synthetic codes exhibit a probability of occurrence of the amino acids proportional to their degeneracy. Unlike the SGC, the synthetic codes display a constant probability of occurrence of the amino acid according to their codonicity. The asymmetry of the phenotypic graphs of codons and anticodons of the SGC, has important implications on the evolutionary processes of proteins.


2018 ◽  
Author(s):  
Maísa de Carvalho Silva ◽  
Lariza Laura De Oliveira ◽  
Renato Tinós

In the last decades, researchers have proposed the use of genetically modified organisms that utilize unnatural amino acids, i.e., amino acids other than the 20 amino acids encoded in the standard genetic code. Unnatural amino acids have been incorporated into genetically engineered organisms for the development of new drugs, fuels and chemicals. When new amino acids are incorporated, it is necessary to modify the standard genetic code. Expanded genetic codes have been created without considering the robustness of the code. The objective of this work is the use of genetic algorithms (GAs) for the optimization of expanded genetic codes. The GA indicates which codons of the standard genetic code should be used to encode a new unnatural amino acid. The fitness function has two terms; one for robustness of the new code and another that takes into account the frequency of use of amino acids. Experiments show that, by controlling the weighting between the two terms, it is possible to obtain more or less amino acid substitutions at the same time that the robustness is minimized.


Amino Acids ◽  
2020 ◽  
Author(s):  
Thomas L. Williams ◽  
Debra J. Iskandar ◽  
Alexander R. Nödling ◽  
Yurong Tan ◽  
Louis Y. P. Luk ◽  
...  

AbstractGenetic code expansion is a powerful technique for site-specific incorporation of an unnatural amino acid into a protein of interest. This technique relies on an orthogonal aminoacyl-tRNA synthetase/tRNA pair and has enabled incorporation of over 100 different unnatural amino acids into ribosomally synthesized proteins in cells. Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA from Methanosarcina species are arguably the most widely used orthogonal pair. Here, we investigated whether beneficial effect in unnatural amino acid incorporation caused by N-terminal mutations in PylRS of one species is transferable to PylRS of another species. It was shown that conserved mutations on the N-terminal domain of MmPylRS improved the unnatural amino acid incorporation efficiency up to five folds. As MbPylRS shares high sequence identity to MmPylRS, and the two homologs are often used interchangeably, we examined incorporation of five unnatural amino acids by four MbPylRS variants at two temperatures. Our results indicate that the beneficial N-terminal mutations in MmPylRS did not improve unnatural amino acid incorporation efficiency by MbPylRS. Knowledge from this work contributes to our understanding of PylRS homologs which are needed to improve the technique of genetic code expansion in the future.


1972 ◽  
Vol 54 (2) ◽  
pp. 279-294 ◽  
Author(s):  
David C. Shephard ◽  
Wendy B. Levin

The ability of chloroplasts isolated from Acetabulana mediterranea to synthesize the protein amino acids has been investigated. When this chloroplast isolate was presented with 14CO2 for periods of 6–8 hr, tracer was found in essentially all amino acid species of their hydrolyzed protein Phenylalanine labeling was not detected, probably due to technical problems, and hydroxyproline labeling was not tested for The incorporation of 14CO2 into the amino acids is driven by light and, as indicated by the amount of radioactivity lost during ninhydrin decarboxylation on the chromatograms, the amino acids appear to be uniformly labeled. The amino acid labeling pattern of the isolate is similar to that found in plastids labeled with 14CO2 in vivo. The chloroplast isolate did not utilize detectable amounts of externally supplied amino acids in light or, with added adenosine triphosphate (ATP), in darkness. It is concluded that these chloroplasts are a tight cytoplasmic compartment that is independent in supplying the amino acids used for its own protein synthesis. These results are discussed in terms of the role of contaminants in the observed synthesis, the "normalcy" of Acetabularia chloroplasts, the synthetic pathways for amino acids in plastids, and the implications of these observations for cell compartmentation and chloroplast autonomy.


Sign in / Sign up

Export Citation Format

Share Document