scholarly journals Creativity and the Social Brain

2018 ◽  
Author(s):  
Anna Abraham

The neuroscience of imagination has revealed extensive parallels between the brain correlates of creative cognition and those of social cognition. There is, however, scarcely any exchange of ideas between the different research communities that is aimed at understanding what such commonalities reveal. The evidence indicates that there are some fundamental similarities in very nature of the information processing mechanisms that underlie cognitive and social aspects of mental life that are customarily viewed to be quite distinct from one another. This chapter features reflections on these similarities by generating cross-connections between current knowledge on creative cognition and social cognition. Themes that are explored include candidate mechanisms of correspondences between creativity and social behaviour, such as the ‘intention to communicate’ (by means of expression), the ‘intention to understand’ (by means of inference and discovery), and the ‘personal relevance bias’ (by means of alertness to self-related salience and significance).

Author(s):  
Tanaz Molapour ◽  
Cindy C Hagan ◽  
Brian Silston ◽  
Haiyan Wu ◽  
Maxwell Ramstead ◽  
...  

ABSTRACT The social environment presents the human brain with the most complex of information processing demands. The computations that the brain must perform occur in parallel, combine social and nonsocial cues, produce verbal and non-verbal signals, and involve multiple cognitive systems; including memory, attention, emotion, learning. This occurs dynamically and at timescales ranging from milliseconds to years. Here, we propose that during social interactions, seven core operations interact to underwrite coherent social functioning; these operations accumulate evidence efficiently – from multiple modalities – when inferring what to do next. We deconstruct the social brain and outline the key components entailed for successful human social interaction. These include (1) social perception; (2) social inferences, such as mentalizing; (3) social learning; (4) social signaling through verbal and non-verbal cues; (5) social drives (e.g., how to increase one’s status); (6) determining the social identity of agents, including oneself; and (7) minimizing uncertainty within the current social context by integrating sensory signals and inferences. We argue that while it is important to examine these distinct aspects of social inference, to understand the true nature of the human social brain, we must also explain how the brain integrates information from the social world.


2015 ◽  
Vol 38 ◽  
Author(s):  
Julian Kiverstein ◽  
Mark Miller

AbstractPessoa (2013) makes a compelling case for conceiving of emotion and cognition as deeply integrated processes in the brain. We will begin our commentary by asking what implications this view of the brain has for an ontology of cognition – a theory of what cognition is and what cognitive processes exist. We will suggest that Pessoa's book, The Cognitive-Emotional Brain, provides strong support for an embodied theory of cognition. We end our commentary by offering some speculation about how Pessoa's arguments naturally extend to social cognition.


Author(s):  
Benjamin A. Devlin ◽  
Caroline J. Smith ◽  
Staci D. Bilbo

Many instances of sickness critically involve the immune system. The immune system talks to the brain in a bi-directional loop. This discourse affords the immune system immense control, such that it can influence behavior and optimize recovery from illness. These behavioral responses to infection are called sickness behaviors and can manifest in many ways, including changes in mood, motivation, or energy. Fascinatingly, most of these changes are conserved across species, and most organisms demonstrate some form of sickness behaviors. One of the most interesting sickness behaviors, and not immediately obvious, is altered sociability. Here, we discuss how the immune system impacts social behavior, by examining the brain regions and immune mediators involved in this process. We first outline how social behavior changes in response to infection in various species. Next, we explore which brain regions control social behavior and their evolutionary origins. Finally, we describe which immune mediators establish the link between illness and social behavior, in the context of both normal development and infection. Overall, we hope to make clear the striking similarities between the mechanisms that facilitate changes in sociability in derived and ancestral vertebrate, as well as invertebrate, species.


2020 ◽  
Vol 15 (4) ◽  
pp. 423-436
Author(s):  
Élodie Cauvet ◽  
Annelies van’t Westeinde ◽  
Roberto Toro ◽  
Ralf Kuja-Halkola ◽  
Janina Neufeld ◽  
...  

Abstract A female advantage in social cognition (SoC) might contribute to women’s underrepresentation in autism spectrum disorder (ASD). The latter could be underpinned by sex differences in social brain structure. This study investigated the relationship between structural social brain networks and SoC in females and males in relation to ASD and autistic traits in twins. We used a co-twin design in 77 twin pairs (39 female) aged 12.5 to 31.0 years. Twin pairs were discordant or concordant for ASD or autistic traits, discordant or concordant for other neurodevelopmental disorders or concordant for neurotypical development. They underwent structural magnetic resonance imaging and were assessed for SoC using the naturalistic Movie for the Assessment of Social Cognition. Autistic traits predicted reduced SoC capacities predominantly in male twins, despite a comparable extent of autistic traits in each sex, although the association between SoC and autistic traits did not differ significantly between the sexes. Consistently, within-pair associations between SoC and social brain structure revealed that lower SoC ability was associated with increased cortical thickness of several brain regions, particularly in males. Our findings confirm the notion that sex differences in SoC in association with ASD are underpinned by sex differences in brain structure.


2016 ◽  
Vol 371 (1693) ◽  
pp. 20150379 ◽  
Author(s):  
Hanne De Jaegher ◽  
Ezequiel Di Paolo ◽  
Ralph Adolphs

A recent framework inspired by phenomenological philosophy, dynamical systems theory, embodied cognition and robotics has proposed the interactive brain hypothesis (IBH). Whereas mainstream social neuroscience views social cognition as arising solely from events in the brain, the IBH argues that social cognition requires, in addition, causal relations between the brain and the social environment. We discuss, in turn, the foundational claims for the IBH in its strongest form; classical views of cognition that can be raised against the IBH; a defence of the IBH in the light of these arguments; and a response to this. Our goal is to initiate a dialogue between cognitive neuroscience and enactive views of social cognition. We conclude by suggesting some new directions and emphases that social neuroscience might take.


2010 ◽  
Vol 365 (1537) ◽  
pp. 165-176 ◽  
Author(s):  
Uta Frith ◽  
Chris Frith

The biological basis of complex human social interaction and communication has been illuminated through a coming together of various methods and disciplines. Among these are comparative studies of other species, studies of disorders of social cognition and developmental psychology. The use of neuroimaging and computational models has given weight to speculations about the evolution of social behaviour and culture in human societies. We highlight some networks of the social brain relevant to two-person interactions and consider the social signals between interacting partners that activate these networks. We make a case for distinguishing between signals that automatically trigger interaction and cooperation and ostensive signals that are used deliberately. We suggest that this ostensive signalling is needed for ‘closing the loop’ in two-person interactions, where the partners each know that they have the intention to communicate. The use of deliberate social signals can serve to increase reputation and trust and facilitates teaching. This is likely to be a critical factor in the steep cultural ascent of mankind.


2010 ◽  
Vol 33 (6) ◽  
pp. 458-459 ◽  
Author(s):  
Atsushi Senju ◽  
Mark H. Johnson

AbstractEye contact plays a critical role in many aspects of face processing, including the processing of smiles. We propose that this is achieved by a subcortical route, which is activated by eye contact and modulates the cortical areas involve in social cognition, including the processing of facial expression. This mechanism could be impaired in individuals with autism spectrum disorders.


2019 ◽  
Author(s):  
Andrea L. Courtney ◽  
Meghan L. Meyer

Social connection is critical to well-being, yet how the brain reflects our attachment to other people remains largely unknown. We combined univariate and multivariate brain imaging analyses to assess whether and how the brain organizes representations of others based on how connected they are to our own identity. During an fMRI scan, participants (N=43) completed a self- and other-reflection task for 16 targets: the self, five close others, five acquaintances, and five celebrities. In addition, they reported their subjective closeness to each target and their own trait loneliness. We examined neural responses to the self and others in a brain region that has been associated with self-representation (medial prefrontal cortex; MPFC) and across the whole brain. The structure of self-other representation in the MPFC and across the social brain appeared to cluster targets into three social categories: the self, social network members (including close others and acquaintances), and celebrities. Moreover, both univariate activation in MPFC and multivariate self-other similarity in MPFC and across the social brain increased with subjective self-other closeness ratings. Critically, participants who were less socially connected (i.e. lonelier) showed altered self-other mapping in social brain regions. Most notably, in MPFC, loneliness was associated with reduced representational similarity between the self and others. The social brain apparently maintains information about broad social categories as well as closeness to the self. Moreover, these results point to the possibility that feelings of chronic social disconnection may be mirrored by a ‘lonelier’ neural self-representation.Significance StatementSocial connection is critical to well-being, yet how the brain reflects our attachment to people remains unclear. We found that the social brain stratifies neural representations of people based on our subjective connection to them, separately clustering people who are and are not in our social network. Moreover, the people we feel closest to are represented most closely to ourselves. Finally, lonelier individuals also appeared to have a ‘lonelier’ neural self-representation in the MPFC, as loneliness attenuated the closeness between self and other neural representations in this region. The social brain appears to map our interpersonal ties, and alterations in this map may help explain why lonely individuals endorse statements such as ‘people are around me but not with me’.


Sign in / Sign up

Export Citation Format

Share Document