scholarly journals Verbal interference suppresses object-scene binding in visual long-term memory

2020 ◽  
Author(s):  
Zhisen Urgolites ◽  
Timothy F. Brady ◽  
Justin Newell Wood

Building a unified representation of an event requires binding object and scene information in visual long-term memory (VLTM). While previous studies have examined how humans remember individual objects and scenes, little is known about the mechanisms that support object-scene binding. In this study, we examined whether language plays a role in binding objects and scenes in VLTM. Participants studied a large number of object-scene pairs, either while performing no concurrent task, a concurrent verbal shadowing task, or a concurrent rhythmic shadowing task. Participants were then tested on their memory for the individual objects and scenes (entity memory) or their memory for which objects were displayed in which scenes (object-scene binding). We found that (1) the rhythmic load and verbal load impaired memory for objects and scenes to a similar extent, but (2) the verbal load impaired object-scene binding significantly more than the rhythmic load. Thus, suppressing verbal resources during encoding selectively disrupts object-scene binding in long-term memory. We conclude that language networks play an important role in object-scene binding in VLTM.

2021 ◽  
Author(s):  
Jannik Luboeinski ◽  
Christian Tetzlaff

AbstractSynaptic tagging and capture (STC) is a molecular mechanism that accounts for the consolidation of synaptic changes induced by plasticity. To link this mechanism to long-term memory and thereby to the level of behavior, its dynamics on the level of recurrent networks have to be understood. To this end, we employ a biologically detailed neural network model of spiking neurons featuring STC, which models the learning and consolidation of long-term memory representations. Using this model, we investigate the effects of different organizational paradigms of multiple memory representations, and demonstrate a proof of principle for priming on long timescales. We examine these effects considering the spontaneous activation of memory representations as the network is driven by background noise. Our first finding is that the order in which the memory representations are learned significantly biases the likelihood of spontaneous activation towards more recently learned memory representations. Secondly, we find that hub-like structures counter this learning order effect for representations with less overlaps. We show that long-term depression is the mechanism underlying these findings, and that intermediate consolidation in between learning the individual representations strongly alters the described effects. Finally, we employ STC to demonstrate the priming of a long-term memory representation on a timescale of minutes to hours. As shown by these findings, our model provides a mechanistic synaptic and neuronal basis for known behavioral effects.


Author(s):  
Paul Eggen

Information processing is a cognitive learning theory that helps explain how individuals acquire, process, store, and retrieve information from memory. The cognitive architecture that facilitates the processing of information consists of three components: memory stores, cognitive processes, and metacognition. The memory stores are sensory memory, a virtually unlimited store that briefly holds stimuli from the environment in an unprocessed form until processing begins; working memory, the conscious component of our information processing system, limited in both capacity and duration, where knowledge is organized and constructed in a form that makes sense to the individual; and long-term memory, a vast and durable store that holds an individual’s lifetime of acquired information. Information is moved from sensory memory to working memory using the cognitive processes attention, selectively focusing on a single stimulus, and perception, the process of attaching meaning to stimuli. After information is organized in working memory so it makes sense to the individual, it is represented in long-term memory through the process of encoding, where it can later be retrieved and connected to new information from the environment. Metacognition is a regulatory mechanism that facilitates the use of strategies, such as chunking, automaticity, and distributed processing, that help accommodate the limitations of working memory, and schema activation, organization, elaboration, and imagery that promote the efficient encoding of information into long-term memory. Information processing theory has implications for our daily living ranging from tasks as simple as shopping at a supermarket to those as sophisticated as solving complex problems.


2018 ◽  
Vol 71 (11) ◽  
pp. 2261-2281 ◽  
Author(s):  
Janina A Hoffmann ◽  
Bettina von Helversen ◽  
Regina A Weilbächer ◽  
Jörg Rieskamp

People often forget acquired knowledge over time such as names of former classmates. Which knowledge people can access, however, may modify the judgement process and affect judgement accuracy. Specifically, we hypothesised that judgements based on retrieving past exemplars from long-term memory may be more vulnerable to forgetting than remembering rules that relate the cues to the criterion. Experiment 1 systematically tracked the individual course of forgetting from initial learning to later tests (immediate, 1 day, and 1 week) in a linear judgement task facilitating rule-based strategies and a multiplicative judgement task facilitating exemplar-based strategies. Practising the acquired judgement strategy in repeated tests helped participants to consistently apply the learnt judgement strategy and retain a high judgement accuracy even after a week. Yet, whereas a long retention interval did not affect judgements in the linear task, a long retention interval impaired judgements in the multiplicative task. If practice was restricted as in Experiment 2, judgement accuracy suffered in both tasks. In addition, after a week without practice, participants tried to reconstruct their judgements by applying rules in the multiplicative task. These results emphasise that the extent to which decision makers can still retrieve previously learned knowledge limits their ability to make accurate judgements and that the preferred strategies change over time if the opportunity for practice is limited.


2007 ◽  
Vol 3 (5) ◽  
pp. 459-462 ◽  
Author(s):  
Stephanie Dreier ◽  
Jelle S van Zweden ◽  
Patrizia D'Ettorre

Remembering individual identities is part of our own everyday social life. Surprisingly, this ability has recently been shown in two social insects. While paper wasps recognize each other individually through their facial markings, the ant, Pachycondyla villosa , uses chemical cues. In both species, individual recognition is adaptive since it facilitates the maintenance of stable dominance hierarchies among individuals, and thus reduces the cost of conflict within these small societies. Here, we investigated individual recognition in Pachycondyla ants by quantifying the level of aggression between pairs of familiar or unfamiliar queens over time. We show that unrelated founding queens of P. villosa and Pachycondyla inversa store information on the individual identity of other queens and can retrieve it from memory after 24 h of separation. Thus, we have documented for the first time that long-term memory of individual identity is present and functional in ants. This novel finding represents an advance in our understanding of the mechanism determining the evolution of cooperation among unrelated individuals.


2017 ◽  
Vol 13 (2) ◽  
pp. 20160853 ◽  
Author(s):  
Francesca Soldati ◽  
Oliver H. P. Burman ◽  
Elizabeth A. John ◽  
Thomas W. Pike ◽  
Anna Wilkinson

Long-term memory can be adaptive as it allows animals to retain information that is crucial for survival, such as the appearance and location of key resources. This is generally examined by comparing choices of stimuli that have value to the animal with those that do not; however, in nature choices are rarely so clear cut. Animals are able to assess the relative value of a resource via direct comparison, but it remains unclear whether they are able to retain this information for a biologically meaningful amount of time. To test this, captive red-footed tortoises ( Chelonoidis carbonaria ) were first trained to associate visual cues with specific qualities and quantities of food, and their preferences for the different reward values determined. They were then retested after an interval of 18 months. We found that the tortoises were able to retain the information they had learned about the cues as indicators of relative reward values over this interval, demonstrating a memory for the relative quantity and quality of food over an extended period of time. This is likely to impact directly on an animal's foraging decisions, such as the exploitation of seasonally varying resources, with obvious fitness implications for the individual; however, the implications may also extend to the ecological interactions in which the animal is involved, affecting processes such as herbivory and seed dispersal.


2020 ◽  
Author(s):  
Peiyun Zhou ◽  
Florian Sense ◽  
Hedderik van Rijn ◽  
Andrea Stocco

AbstractTranslational applications of cognitive science depend on having predictive models at the individual, or idiographic, level. However, idiographic model parameters, such as working memory capacity, often need to be estimated from specific tasks, making them dependent on task-specific assumptions. Here, we explore the possibility that idiographic parameters reflect an individual’s biology and can be identified from task-free neuroimaging measures. To test this hypothesis, we correlated a reliable behavioral trait, the individual rate of forgetting in long-term memory, with a readily available task-free neuroimaging measure, the resting-state EEG spectrum. Using an established, adaptive fact-learning procedure, the rate of forgetting for verbal and visual materials was measured in a sample of 50 undergraduates from whom we also collected eyes-closed resting-state EEG data. Statistical analyses revealed that the individual rates of forgetting were significantly correlated across verbal and visual materials. Importantly, both rates correlated with resting-state power levels low (13-15 Hz) and upper (15-17 Hz) portion of the beta frequency bands. These correlations were particularly strong for visuospatial materials, were distributed over multiple fronto-parietal locations, and remained significant even after a correction for multiple comparisons (False Discovery Rate) and robust correlations methods were applied. These results suggest that computational models could be individually tailored for prediction using idiographic parameter values derived from inexpensive, task-free imaging recordings.


2016 ◽  
Vol 39 ◽  
Author(s):  
Mary C. Potter

AbstractRapid serial visual presentation (RSVP) of words or pictured scenes provides evidence for a large-capacity conceptual short-term memory (CSTM) that momentarily provides rich associated material from long-term memory, permitting rapid chunking (Potter 1993; 2009; 2012). In perception of scenes as well as language comprehension, we make use of knowledge that briefly exceeds the supposed limits of working memory.


2020 ◽  
Vol 29 (4) ◽  
pp. 710-727
Author(s):  
Beula M. Magimairaj ◽  
Naveen K. Nagaraj ◽  
Alexander V. Sergeev ◽  
Natalie J. Benafield

Objectives School-age children with and without parent-reported listening difficulties (LiD) were compared on auditory processing, language, memory, and attention abilities. The objective was to extend what is known so far in the literature about children with LiD by using multiple measures and selective novel measures across the above areas. Design Twenty-six children who were reported by their parents as having LiD and 26 age-matched typically developing children completed clinical tests of auditory processing and multiple measures of language, attention, and memory. All children had normal-range pure-tone hearing thresholds bilaterally. Group differences were examined. Results In addition to significantly poorer speech-perception-in-noise scores, children with LiD had reduced speed and accuracy of word retrieval from long-term memory, poorer short-term memory, sentence recall, and inferencing ability. Statistically significant group differences were of moderate effect size; however, standard test scores of children with LiD were not clinically poor. No statistically significant group differences were observed in attention, working memory capacity, vocabulary, and nonverbal IQ. Conclusions Mild signal-to-noise ratio loss, as reflected by the group mean of children with LiD, supported the children's functional listening problems. In addition, children's relative weakness in select areas of language performance, short-term memory, and long-term memory lexical retrieval speed and accuracy added to previous research on evidence-based areas that need to be evaluated in children with LiD who almost always have heterogenous profiles. Importantly, the functional difficulties faced by children with LiD in relation to their test results indicated, to some extent, that commonly used assessments may not be adequately capturing the children's listening challenges. Supplemental Material https://doi.org/10.23641/asha.12808607


2011 ◽  
Vol 70 (1) ◽  
pp. 35-39 ◽  
Author(s):  
Muriel Fanget ◽  
Catherine Thevenot ◽  
Caroline Castel ◽  
Michel Fayol

In this study, we used a paradigm recently developed ( Thevenot, Fanget, & Fayol, 2007 ) to determine whether 10-year-old children solve simple addition problems by retrieval of the answer from long-term memory or by calculation procedures. Our paradigm is unique in that it does not rely on reaction times or verbal reports, which are known to potentially bias the results, especially in children. Rather, it takes advantage of the fact that calculation procedures degrade the memory traces of the operands, so that it is more difficult to recognize them when they have been involved in the solution of an addition problem by calculation rather than by retrieval. The present study sharpens the current conclusions in the literature and shows that, when the sum of addition problems is up to 10, children mainly use retrieval, but when it is greater than 10, they mainly use calculation procedures.


2010 ◽  
Vol 24 (4) ◽  
pp. 249-252 ◽  
Author(s):  
Márk Molnár ◽  
Roland Boha ◽  
Balázs Czigler ◽  
Zsófia Anna Gaál

This review surveys relevant and recent data of the pertinent literature regarding the acute effect of alcohol on various kinds of memory processes with special emphasis on working memory. The characteristics of different types of long-term memory (LTM) and short-term memory (STM) processes are summarized with an attempt to relate these to various structures in the brain. LTM is typically impaired by chronic alcohol intake but according to some data a single dose of ethanol may have long lasting effects if administered at a critically important age. The most commonly seen deleterious acute effect of alcohol to STM appears following large doses of ethanol in conditions of “binge drinking” causing the “blackout” phenomenon. However, with the application of various techniques and well-structured behavioral paradigms it is possible to detect, albeit occasionally, subtle changes of cognitive processes even as a result of a low dose of alcohol. These data may be important for the consideration of legal consequences of low-dose ethanol intake in conditions such as driving, etc.


Sign in / Sign up

Export Citation Format

Share Document