How Goal Cue and Motor Activity Modulate Working Memory Performance in Preschoolers?

2019 ◽  
Author(s):  
Christophe Fitamen ◽  
Agnès Blaye ◽  
Valerie Camos

Working memory (WM) development is considered as a major source of cognitive development. Nevertheless, preschoolers are well known for their poor performance in WM tasks. We suggested that this poor performance results from goal neglect, which would hamper the setting of maintenance strategies. Previous studies have shown that preschoolers’ WM performance can be improved in particular contexts, such as game situation because it can provide cues to support goal maintenance (Bertrand & Camos, 2015; Istomina, 1975). The present experiment aimed at disentangling the effect of two types of cues, exogenous and endogenous, in 5- to 7-year-old children's recall performance. Based on previous findings, a shopping stall was used as exogenous cue and walking played the role of an endogenous cue. The shopping stall provides an exogenous cue because it helps maintaining the goal, i.e., why children had to memorize the series of fruits and vegetables, while walking can provide an endogenous cue as the end of the walk coincides with recall time. Contrary to our hypotheses, we did not observe any improvement of WM performance in conditions with the shopping stall as potential goal cue whereas a detrimental effect of walking was observed in all age groups. We proposed that the latter effect resulted from the distracting of attention from attention-based maintenance activities, and that preschoolers' poor WM performance is not fundamentally due to goal neglect.

Author(s):  
Rachel O Coats ◽  
Amanda H Waterman ◽  
Fiona Ryder ◽  
Amy L Atkinson ◽  
Richard J Allen

Abstract Objectives In young adults, the ability to verbally recall instructions in working memory is enhanced if the sequences are physically enacted by the participant (self-enactment) or the experimenter (demonstration) during encoding. Here we examine the effects of self-enactment and demonstration at encoding on working memory performance in older and younger adults. Method Fifty young (18–23 years) and 40 older (60–89 years) adults listened to sequences of novel action-object pairs before verbally recalling them in the correct order. There were three different encoding conditions: spoken only, spoken + demonstration, and spoken + self-enactment. We included two different levels of difficulty to investigate whether task complexity moderated the effect of encoding condition and whether this differed between age groups. Results Relative to the spoken only condition, demonstration significantly improved young and older adults’ serial recall performance, but self-enactment only enhanced performance in the young adults, and this boost was smaller than the one gained through demonstration. Discussion Our findings suggest that additional spatial-motoric information is beneficial for older adults when the actions are demonstrated to them, but not when the individual must enact the instructions themselves.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gianluca Amico ◽  
Sabine Schaefer

Studies examining the effect of embodied cognition have shown that linking one’s body movements to a cognitive task can enhance performance. The current study investigated whether concurrent walking while encoding or recalling spatial information improves working memory performance, and whether 10-year-old children, young adults, or older adults (Mage = 72 years) are affected differently by embodiment. The goal of the Spatial Memory Task was to encode and recall sequences of increasing length by reproducing positions of target fields in the correct order. The nine targets were positioned in a random configuration on a large square carpet (2.5 m × 2.5 m). During encoding and recall, participants either did not move, or they walked into the target fields. In a within-subjects design, all possible combinations of encoding and recall conditions were tested in counterbalanced order. Contrary to our predictions, moving particularly impaired encoding, but also recall. These negative effects were present in all age groups, but older adults’ memory was hampered even more strongly by walking during encoding and recall. Our results indicate that embodiment may not help people to memorize spatial information, but can create a dual-task situation instead.


2015 ◽  
Vol 6 (1) ◽  
pp. 16 ◽  
Author(s):  
Anne-Laure Oftinger ◽  
Valerie Camos

<p>Previous research in adults has indicated two maintenance mechanisms of verbal information in working memory, i.e., articulatory rehearsal and attentional refreshing. However, only three studies have examined their joint contribution to children’s verbal working memory. The present study aimed at extending this line of research by investigating the developmental changes occurring from 6 to 9 years old. In two experiments using complex span tasks, children of three different age groups maintained letters or words while performing a concurrent task. The opportunity for attentional refreshing was manipulated by varying the attentional demand of the concurrent task. Moreover, this task was performed either silently by pressing keys or aloud, the latter inducing a concurrent articulation. As expected, recall performance increased strongly with age. More interestingly, concurrent articulation had a detrimental effect on recall even in 6-year-old children. Similarly, introducing a concurrent attention-demanding task impaired recall performance at all ages. Finally, the effect of the availability of rehearsal and of attentional refreshing never interacted at any age. This suggested an independence of the two mechanisms in the maintenance of verbal information in children’s working memory. Implications for the development of rehearsal use and for the role of attention in working memory are discussed.</p>


2014 ◽  
Vol 222 (2) ◽  
pp. 90-99 ◽  
Author(s):  
Klara Marton ◽  
Naomi Eichorn

Individual differences in working memory have been related to interactions between working memory and long-term memory (LTM). The present study examined this interaction in children with and without language impairment. We used two listening span tasks and two nonword repetition tasks. The results suggest a strong interaction among age, language status, and task complexity. Children with specific language impairment showed consistently poor performance across tasks and indicated a weakness in using long-term knowledge to support working memory performance. The findings show that these children do not benefit from various manipulations designed to enhance working memory performance via LTM support due to a combination of inefficiencies in maintaining and updating items in working memory and retrieving information from LTM, in part because of their poor resistance to interference.


Remembering ◽  
2021 ◽  
pp. 169-188
Author(s):  
Fergus I. M. Craik

Memory performance declines in the course of healthy aging, and this chapter discusses some reasons why this may be so. The author suggests that there is an age-related decline in both processing resources and in cognitive control, and that these deficiencies underlie less efficient encoding and retrieval processes. Age-related memory losses are greater in some tasks than in others, however, and the case is made that losses are relatively slight in situations that involve substantial amounts of environmental support and therefore require small amounts of self-initiated activity. In turn, the inefficiency of self-initiated activities is attributed to age-related deficiencies in frontal lobe functions. Age-related deficits in recall performance (which is heavily reliant on self-initiation) are reduced in a recognition test, which embodies greater environmental support. Deficits were also reduced by the use of pictures as materials, and there were no age differences in the ability to hold high-valued words in working memory. These effects are illustrated by experiments carried out by the author and collaborators.


2021 ◽  
Vol 12 ◽  
Author(s):  
Christophe Fitamen ◽  
Valérie Camos

It has been shown that acting in a game-like task improves preschoolers’ working memory when tested in a reconstruction task. The game context and the motor activity during the game would provide goal cues bringing support to the memory processes. The aim of the present study was to test this hypothesis by examining preschoolers’ working memory performance in a game-like task compared to an exercise-like task, which offers less goal cues. In the present study, 5-year-olds had to maintain a series of fruits and vegetables while acting in a game-like task or remaining static during the same task presented in a school-exercise context (within-subject factor). Memory performance was tested either through oral recall or reconstruction of the series of memory items (between-subject factor). Despite the fact that memory performance did not differ between the two conditions (game vs. exercise) whatever the type of memory tests, performance was worst in the game-like than in the exercise condition when the exercise was presented first. No difference emerged between conditions when the game condition was performed first. This result suggests that preschoolers were able to take advantage of acting in the game-like condition to integrate some task requirements, which were beneficial for performing the exercise condition.


Author(s):  
Agatha Lenartowicz ◽  
Holly Truong ◽  
Kristen D. Enriquez ◽  
Julia Webster ◽  
Jean-Baptiste Pochon ◽  
...  

AbstractWorking memory (WM) has been defined as the active maintenance and flexible updating of goal-relevant information in a form that has limited capacity and resists interference. Complex measures of WM recruit multiple subprocesses, making it difficult to isolate specific contributions of putatively independent subsystems. The present study was designed to determine whether neurophysiological indicators of proposed subprocesses of WM predict WM performance. We recruited 200 individuals defined by care-seeking status and measured neural responses using electroencephalography (EEG), while participants performed four WM tasks. We extracted spectral and time-domain EEG features from each task to quantify each of the hypothesized WM subprocesses: maintenance (storage of content), goal maintenance, and updating. We then used EEG measures of each subprocess as predictors of task performance to evaluate their contribution to WM. Significant predictors of WM capacity included contralateral delay activity and frontal theta, features typically associated with maintenance (storage of content) processes. In contrast, significant predictors of reaction time and its variability included contingent negative variation and the P3b, features typically associated with goal maintenance and updating. Broadly, these results suggest two principal dimensions that contribute to WM performance, tonic processes during maintenance contributing to capacity, and phasic processes during stimulus processing that contribute to response speed and variability. The analyses additionally highlight that reliability of features across tasks was greater (and comparable to that of WM performance) for features associated with stimulus processing (P3b and alpha), than with maintenance (gamma, theta and cross-frequency coupling).


2021 ◽  
Author(s):  
Sabrina Sghirripa ◽  
Lynton Graetz ◽  
Nigel Rogasch ◽  
John Semmler ◽  
Mitchell Goldsworthy

Both selective attention and visual working memory (WM) performance are vulnerable to age related decline. Older adults perform worse on, and are less able to modulate oscillatory power in the alpha frequency range (8-12 Hz) than younger adults in WM tasks involving predictive cues about ‘where’ or ‘when’ a stimulus will be present. However, no study has investigated whether alpha power is modulated by cues predicting ‘how long’ an encoding duration will be. To test this, we recorded electroencephalography (EEG) while 24 younger (aged 18-33 years) and 23 older (aged 60-77 years) adults completed a modified delay match-to-sample task where participants were cued to the duration (either 0.1 s or 0.5 s) of an encoding stimulus consisting of 4 coloured squares. We found: (1) predictive cues increased WM capacity, but long encoding duration trials led to reduced WM capacity in both age groups, compared to short encoding duration trials; (2) no evidence for differences in preparatory alpha power between predictive and neutral cues for either short or long encoding durations, but preparatory alpha suppression was weaker in older adults; (3) retention period oscillatory power differed between short and long encoding duration trials, but these differences were no longer present when comparing the trial types from the onset of the encoding stimulus; and (4) oscillatory power in the preparatory and retention periods were not related to task performance. Our results suggest that preparatory alpha power is not modulated by predictive cues towards encoding duration during visual WM, however, reductions in alpha/beta oscillatory power during visual WM retention may be linked to the encoding stimulus, rather than a process specific to WM retention.


2015 ◽  
Vol 27 (8) ◽  
pp. 1601-1616 ◽  
Author(s):  
Kirsten C. S. Adam ◽  
Irida Mance ◽  
Keisuke Fukuda ◽  
Edward K. Vogel

Attentional control and working memory capacity are important cognitive abilities that substantially vary between individuals. Although much is known about how attentional control and working memory capacity relate to each other and to constructs like fluid intelligence, little is known about how trial-by-trial fluctuations in attentional engagement impact trial-by-trial working memory performance. Here, we employ a novel whole-report memory task that allowed us to distinguish between varying levels of attentional engagement in humans performing a working memory task. By characterizing low-performance trials, we can distinguish between models in which working memory performance failures are caused by either (1) complete lapses of attention or (2) variations in attentional control. We found that performance failures increase with set-size and strongly predict working memory capacity. Performance variability was best modeled by an attentional control model of attention, not a lapse model. We examined neural signatures of performance failures by measuring EEG activity while participants performed the whole-report task. The number of items correctly recalled in the memory task was predicted by frontal theta power, with decreased frontal theta power associated with poor performance on the task. In addition, we found that poor performance was not explained by failures of sensory encoding; the P1/N1 response and ocular artifact rates were equivalent for high- and low-performance trials. In all, we propose that attentional lapses alone cannot explain individual differences in working memory performance. Instead, we find that graded fluctuations in attentional control better explain the trial-by-trial differences in working memory that we observe.


2012 ◽  
Vol 110 (3) ◽  
pp. 709-718
Author(s):  
Olga Remick ◽  
David Ross ◽  
Richard Metzger ◽  
Tonya Benton ◽  
Jill Shelton

Four groups of adults, ages 40 to 70+ years, took the Modified Lag Task which requires that participants remember lists of words and subsequently recall the first, second, or third word from the end of the list. Previously, the task showed convergent validity with the operation span (a complex span measure) and a divergent validity with the digit span (a simple span measure). To establish predictive validity, the present study was designed to assess if this task could separate four age groups in working memory performance. The present study found support for the validity of the Modified Lag Task; however, additional research is warranted to further develop the construct validity of this task.


Sign in / Sign up

Export Citation Format

Share Document