scholarly journals Neural underpinning of Japanese particle processing in non-native speakers

2021 ◽  
Author(s):  
Chise Kasai ◽  
Motofumi Sumiya ◽  
Takahiko Koike ◽  
Takaaki Yoshimoto ◽  
Hideki Maki ◽  
...  

Grammar acquisition by non-native learners (L2) is typically less successful and may produce fundamentally different grammatical systems than that by native speakers (L1). The neural representation of grammatical processing between L1 and L2 speakers remains controversial. We hypothesized that working memory is the primary source of L1/L2 differences, and operationalized working memory is an active inference within the predictive coding account, which models grammatical processes as higher-level neuronal representations of cortical hierarchies, generating predictions (forward model) of lower-level representations. A functional MRI study was conducted with L1 Japanese speakers and highly proficient Japanese learners requiring oral production of grammatically correct Japanese particles. Selecting proper particles requires forward model-dependent active inference as their functions are highly context-dependent. As a control, participants read out a visually designated mora indicated by underlining. Particle selection by L1/L2 groups commonly activated the bilateral inferior frontal gyrus/insula, pre-supplementary motor area, left caudate, middle temporal gyrus, and right cerebellum, which constituted the core linguistic production system. In contrast, the left inferior frontal sulcus, known as the neural substrate of verbal working memory, showed more prominent activation in L2 than in L1. Thus, the active inference process causes L1/L2 differences even in highly proficient L2 learners.

2021 ◽  
Author(s):  
Chise Kasai ◽  
Motofumi Sumiya ◽  
Takahiko Koike ◽  
Takaaki Yoshimoto ◽  
Hideki Maki ◽  
...  

Abstract Grammar acquisition by non-native learners (L2) is typically less successful and may produce fundamentally different grammatical systems than that by native speakers (L1). The neural representation of grammatical processing between L1 and L2 speakers remains controversial. We hypothesized that working memory is the primary source of L1/L2 differences, and operationalized working memory is an active inference within the predictive coding account, which models grammatical processes as higher-level neuronal representations of cortical hierarchies, generating predictions (forward model) of lower-level representations. A functional MRI study was conducted with L1 Japanese speakers and highly proficient Japanese learners requiring oral production of grammatically correct Japanese particles. Selecting proper particles requires forward model-dependent active inference as their functions are highly context-dependent. As a control, participants read out a visually designated mora indicated by underlining. Particle selection by L1/L2 groups commonly activated the bilateral inferior frontal gyrus/insula, pre-supplementary motor area, left caudate, middle temporal gyrus, and right cerebellum, which constituted the core linguistic production system. In contrast, the left inferior frontal sulcus, known as the neural substrate of verbal working memory, showed more prominent activation in L2 than in L1. Thus, the active inference process causes L1/L2 differences even in highly proficient L2 learners.


2004 ◽  
Vol 16 (2) ◽  
pp. 289-300 ◽  
Author(s):  
Philip Nixon ◽  
Jenia Lazarova ◽  
Iona Hodinott-Hill ◽  
Patricia Gough ◽  
Richard Passingham

Repetitive transcranial magnetic stimulation (rTMS) offers a powerful new technique for investigating the distinct contributions of the cortical language areas. We have used this method to examine the role of the left inferior frontal gyrus (IFG) in phonological processing and verbal working memory. Functional neuroimaging studies have implicated the posterior part of the left IFG in both phonological decision making and subvocal rehearsal mechanisms, but imaging is a correlational method and it is therefore necessary to determine whether this region is essential for such processes. In this paper we present the results of two experiments in which rTMS was applied over the frontal operculum while subjects performed a delayed phonological matching task. We compared the effects of disrupting this area either during the delay (memory) phase or at the response (decision) phase of the task. Delivered at a time when subjects were required to remember the sound of a visually presented word, rTMS impaired the accuracy with which they subsequently performed the task. However, when delivered later in the trial, as the subjects compared the remembered word with a given pseudoword, rTMS did not impair accuracy. Performance by the same subjects on a control task that required the processing of nonverbal visual stimuli was unaffected by the rTMS. Similarly, performance on both tasks was unaffected by rTMS delivered over a more anterior site (pars triangularis). We conclude that the opercular region of the IFG is necessary for the normal operation of phonologically based working memory mechanisms. Furthermore, this study shows that rTMS can shed further light on the precise role of cortical language areas in humans.


Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 564
Author(s):  
Takazumi Matsumoto ◽  
Jun Tani

It is crucial to ask how agents can achieve goals by generating action plans using only partial models of the world acquired through habituated sensory-motor experiences. Although many existing robotics studies use a forward model framework, there are generalization issues with high degrees of freedom. The current study shows that the predictive coding (PC) and active inference (AIF) frameworks, which employ a generative model, can develop better generalization by learning a prior distribution in a low dimensional latent state space representing probabilistic structures extracted from well habituated sensory-motor trajectories. In our proposed model, learning is carried out by inferring optimal latent variables as well as synaptic weights for maximizing the evidence lower bound, while goal-directed planning is accomplished by inferring latent variables for maximizing the estimated lower bound. Our proposed model was evaluated with both simple and complex robotic tasks in simulation, which demonstrated sufficient generalization in learning with limited training data by setting an intermediate value for a regularization coefficient. Furthermore, comparative simulation results show that the proposed model outperforms a conventional forward model in goal-directed planning, due to the learned prior confining the search of motor plans within the range of habituated trajectories.


2020 ◽  
Vol 1 (3) ◽  
pp. 339-364
Author(s):  
David I. Saltzman ◽  
Emily B. Myers

The extent that articulatory information embedded in incoming speech contributes to the formation of new perceptual categories for speech sounds has been a matter of discourse for decades. It has been theorized that the acquisition of new speech sound categories requires a network of sensory and speech motor cortical areas (the “dorsal stream”) to successfully integrate auditory and articulatory information. However, it is possible that these brain regions are not sensitive specifically to articulatory information, but instead are sensitive to the abstract phonological categories being learned. We tested this hypothesis by training participants over the course of several days on an articulable non-native speech contrast and acoustically matched inarticulable nonspeech analogues. After reaching comparable levels of proficiency with the two sets of stimuli, activation was measured in fMRI as participants passively listened to both sound types. Decoding of category membership for the articulable speech contrast alone revealed a series of left and right hemisphere regions outside of the dorsal stream that have previously been implicated in the emergence of non-native speech sound categories, while no regions could successfully decode the inarticulable nonspeech contrast. Although activation patterns in the left inferior frontal gyrus, the middle temporal gyrus, and the supplementary motor area provided better information for decoding articulable (speech) sounds compared to the inarticulable (sine wave) sounds, the finding that dorsal stream regions do not emerge as good decoders of the articulable contrast alone suggests that other factors, including the strength and structure of the emerging speech categories are more likely drivers of dorsal stream activation for novel sound learning.


2011 ◽  
Vol 23 (6) ◽  
pp. 1358-1367 ◽  
Author(s):  
Daniel J. Acheson ◽  
Massihullah Hamidi ◽  
Jeffrey R. Binder ◽  
Bradley R. Postle

Verbal working memory (VWM), the ability to maintain and manipulate representations of speech sounds over short periods, is held by some influential models to be independent from the systems responsible for language production and comprehension [e.g., Baddeley, A. D. Working memory, thought, and action. New York, NY: Oxford University Press, 2007]. We explore the alternative hypothesis that maintenance in VWM is subserved by temporary activation of the language production system [Acheson, D. J., & MacDonald, M. C. Verbal working memory and language production: Common approaches to the serial ordering of verbal information. Psychological Bulletin, 135, 50–68, 2009b]. Specifically, we hypothesized that for stimuli lacking a semantic representation (e.g., nonwords such as mun), maintenance in VWM can be achieved by cycling information back and forth between the stages of phonological encoding and articulatory planning. First, fMRI was used to identify regions associated with two different stages of language production planning: the posterior superior temporal gyrus (pSTG) for phonological encoding (critical for VWM of nonwords) and the middle temporal gyrus (MTG) for lexical–semantic retrieval (not critical for VWM of nonwords). Next, in the same subjects, these regions were targeted with repetitive transcranial magnetic stimulation (rTMS) during language production and VWM task performance. Results showed that rTMS to the pSTG, but not the MTG, increased error rates on paced reading (a language production task) and on delayed serial recall of nonwords (a test of VWM). Performance on a lexical–semantic retrieval task (picture naming), in contrast, was significantly sensitive to rTMS of the MTG. Because rTMS was guided by language production-related activity, these results provide the first causal evidence that maintenance in VWM directly depends on the long-term representations and processes used in speech production.


2007 ◽  
Vol 19 (12) ◽  
pp. 2035-2049 ◽  
Author(s):  
Christian J. Fiebach ◽  
Angela D. Friederici ◽  
Edward E. Smith ◽  
David Swinney

Verbal working memory, that is, the temporary maintenance of linguistic information in an activated state, is typically assumed to rely on phonological representations. Recent evidence from behavioral, neuropsychological, and electrophysiological studies, however, suggests that conceptual-semantic representations may also be maintained in an activated state. We developed a new semantic working memory task that involves the maintenance of a novel conceptual combination. Functional magnetic resonance imaging data acquired during the maintenance of conceptual combinations, relative to an item recognition task without the possibility of conceptual combination, demonstrate increased activation in the posterior left middle and inferior temporal gyri (known to be involved in conceptual representations) and left inferior frontal gyrus (known to be involved in semantic control processes). We suggest that this temporo-frontal system supports maintenance of conceptual information in working memory, with the frontal regions controlling the sustained activation of heteromodal conceptual representations in the inferior temporal cortex.


2019 ◽  
Vol 30 (4) ◽  
pp. 2389-2400 ◽  
Author(s):  
Sam M Koshy ◽  
Alex I Wiesman ◽  
Rachel K Spooner ◽  
Christine Embury ◽  
Michael T Rezich ◽  
...  

Abstract Recent studies have examined the effects of conventional transcranial direct current stimulation (tDCS) on working memory (WM) performance, but this method has relatively low spatial precision and generally involves a reference electrode that complicates interpretation. Herein, we report a repeated-measures crossover study of 25 healthy adults who underwent multielectrode tDCS of the left dorsolateral prefrontal cortex (DLPFC), right DLPFC, or sham in 3 separate visits. Shortly after each stimulation session, participants performed a verbal WM (VWM) task during magnetoencephalography, and the resulting data were examined in the time–frequency domain and imaged using a beamformer. We found that after left DLPFC stimulation, participants exhibited stronger responses across a network of left-lateralized cortical areas, including the supramarginal gyrus, prefrontal cortex, inferior frontal gyrus, and cuneus, as well as the right hemispheric homologues of these regions. Importantly, these effects were specific to the alpha-band, which has been previously implicated in VWM processing. Although stimulation condition did not significantly affect performance, stepwise regression revealed a relationship between reaction time and response amplitude in the left precuneus and supramarginal gyrus. These findings suggest that multielectrode tDCS targeting the left DLPFC affects the neural dynamics underlying offline VWM processing, including utilization of a more extensive bilateral cortical network.


2009 ◽  
Vol 21 (10) ◽  
pp. 1967-1979 ◽  
Author(s):  
Ilke Öztekin ◽  
Clayton E. Curtis ◽  
Brian McElree

During working memory retrieval, proactive interference (PI) can be induced by semantic similarity and episodic familiarity. Here, we used fMRI to test hypotheses about the role of the left inferior frontal gyrus (LIFG) and the medial temporal lobe (MTL) regions in successful resolution of PI. Participants studied six-word lists and responded to a recognition probe after a short distracter period. We induced semantic PI by using study lists containing words within the same semantic category (e.g., animals). We also measured PI induced by recent study, which should increase episodic familiarity, by comparing recent negative probes (lures studied in previous trial) to distant negative probes (lures that had not been presented within a block). Resolving both types of PI resulted in enhanced activation in LIFG and MTL regions. We propose that the LIFG and the MTL support successful resolution of interference via controlled retrieval processes that serve to recover detailed episodic (e.g., list-specific or source) information: Specifically, the data suggest that BOLD activation in the LIFG reflects the deployment of controlled retrieval operations, regardless of whether the retrieval attempt succeeds in recovering the target information, whereas MTL activation specifically reflects access to relevant episodic information that serves to successfully resolve PI.


2008 ◽  
Vol 24 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Maurits van den Noort ◽  
Peggy Bosch ◽  
Marco Haverkort ◽  
Kenneth Hugdahl

The Reading Span Test (RST) is a verbal working-memory test. The original RST ( Daneman & Carpenter, 1980 ), and derivatives of it, are being used increasingly as assessments of central executive functioning and for research on aging-associated cognitive decline ( Whitney, Arnett, Driver, & Budd, 2001 ). Several versions have been made in order to further improve the test or to develop a version in a different language. However, all versions changed different things, making direct comparisons of the results with the RST between different research groups and across different languages impossible. This paper presents the results of testing a new standard computerized version of the RST in four languages (Dutch, English, German, and Norwegian). The new RST meets strict methodological criteria that are the same for all four language versions. A plausibility test, an abstract-concrete rating scale, and a pilot-study were conducted on native speakers to test the new RST. In addition, the internal and external reliability and the ecological validity of the new RST were tested. The results showed that the new RST is a suitable test to investigate verbal working memory. Finally, an important advantage of the new RST is that the different language versions make cross-linguistic comparisons of RST results possible.


Sign in / Sign up

Export Citation Format

Share Document