scholarly journals POTENSI VEGETASI SEBAGAI PEREDAM INGAR BUNYI KENDARAAN BERMOTOR

2019 ◽  
Author(s):  
KEMALA

The increases of transportation everyday have made multiple effects especially for human heal th. Based on the effects appeared by noise, there were three steps could be done to prevent, to reduce, or to control it. First, noise control at the source of noise, second, noise control at the line, and third, noise control for the receiver (human). This research focus on noise control at the source of noise by plants. The purpose of this research was to investigate the traffic noise attenuation by vegetation. The noise was measured with Sound Level Meter and was taken at two areas, control area without vegetation and deal area with vegetation. Measurement was done in busy days and weekday in the morning, midday, and afternoon. The measurement repeated as many as three. The observation showed that the traffic noise in control area ranging from 77.3 -79.4 dBA, whereas in deal area traffic noise ranging from 56.3-59.4 dBA. In this case, vegetation could reduce the traffic noise as many as 20-21 dBA although the observation result over quality standard which defined by The Ministry of Environment no. 48/1996, that was 65 dBA for office and commerce (control area), and 55 dBA for housing and settlement (deal area).

2019 ◽  
Vol 10 (02) ◽  
pp. 20585-20591
Author(s):  
Adrian Pradana ◽  
I Made Tamba ◽  
I Ketut Widnyana

This research was conducted to analyze the level of traffic noise in Lumintang City Park, Denpasar. The measurement method is by using a direct method that is using an integrating sound level meter that has an LTMS measurement facility, namely Leq with a measuring time every 5 seconds. The examination is carried out by measuring for 10 minutes. The measurement time is carried out during the 24 hour activity (NGO) on December 3, 2018. The measurement distance ranges from 5-10 meters from the road, with a height of 1-1.2 m from the ground level. The results of the research on the level of traffic noise in Lumintang City Park Denpasar showed the noise level that exceeded the noise level quality standards of the green open space area of 50 dB, where in the first lane the traffic noise level was 92.52 dB at L3. While the noise research in lane 2 shows that the highest traffic noise level of 85.70 dB occurs at L5. For day and night (NGO) noise levels in lane 1 amounting to 70.13 dB and lane 2 of 67.95 dB has exceeded the quality standard of green open space, so that it can cause physical and psychological disturbances for visitors to the Taman Lumintang City of Denpasar..


2016 ◽  
pp. 3218-3223
Author(s):  
Esi Oghenevovwero E1

The assessment of environmental traffic noise pollution in Uvwie local government area of Delta State, Nigeria was carriedout using a well calibrated portable digital sound level meter (Model CEL-231). The sound level meter is an instrumentused for measuring the exposure level of noise in the field. The measurement was done three times/day (Morning session9am – 10am, afternoon session 1pm – 2pm and Evening session 4pm – 5pm) and readings were taken. The mean resultsmeasured from the studied area ranged from 74.61dB (A) in the evening to 76.92dB (A) in the afternoon with meanaverage of 76.66dB (A).The obtained mean values of traffic noise when compared with the permissible level for road trafficnoise of 65 decibels dB (A) in commercial area during the Day time, it was observed that the obtained mean level resultsexceeded the permissible standard limit. These high values can be attributed to poor maintenance of the vehicles,indiscriminate usage of pressure horns and present of heavy duty truck that load petroleum product and cargo containersfrom the Warri refinery and Warri port (Nigeria Port Authority) respectively. This study revealed that immediate healthimplication may not be observed at the present level, but long term health effects are probable in the nearest future.


2018 ◽  
Vol 3 (2) ◽  
pp. 70-77
Author(s):  
Widya Nilandita ◽  
Dyah Ratri Nurmaningsih ◽  
Shinfi Wazna Auvaria

Noise can occur anywhere, including at educational institutions. Noise research at educational institutions began to be studied a lot because of the negative impact on the teaching and learning process and disrupt the performance of teachers and students. Some studies show that schools or universities located on the edge of the road, show noise levels that exceed quality standards. This research was conducted at educational institutions located along the east Frontage Road Jl A.Yani Road, Surabaya, by measuring noise levels at 3 locations, in daylighting measurements with 4 measurement times (L1-L4). Data collection and processing was carried out by referring to the quality standard of KEPMENLH No. 48 of 1996. Data was measured using a sound level meter for 10 minutes for each measurement, with a reading every 5 seconds to obtain 120 data. Data processing results are compared with the standard noise level. The noise value at SD Margorejo I / 403 is 82.2 dB, UIN Sunan Ampel Surabaya is 79.76 dB, and SMK 3 Surabaya is 80.06 dB. The noise level value has exceeded the established quality standard, which has maximum of 55 dB for the educational intitutions area. The source of noise comes from the activities of motorized vehicles in and around educational institution that is quite crowded. Another cause of the high noise value is the train activities along the east frontage road Jl A.yani Surabaya, as well as the distance of the noise source with research location that relatively close. Keywords: noise, educational institution, sound level meter


Jurnal Dampak ◽  
2018 ◽  
Vol 15 (1) ◽  
pp. 7
Author(s):  
Vera Surtia Bachtiar ◽  
Reri Afrianita ◽  
Ary Zamzamy

This study aims to determine and evaluate the level of noise in the southern area of Universitas Negeri Padang (UNP) Kampus Air Tawar conducted at 23 points of measurement with 16 outside outdoor points and 7 indoor measurement points. Method of measurement under regulation of Indonesian government, KepMenLH Regulation no. 48 thn 1996 which regulate the noise level standard by using SLM (Sound Level Meter). The highest outdoor noise level occurs in front of GOR UNP (S16) at the time of L3 which is 80,91 dBA, while the highest indoor noise level when there was activity as well as no activity in the room was happened in lecture hall FBSS UNP (S7-interior) with value equal to 83, 99 dBA and 64.65 dBA. All points of a total of 16 outdoor and 7 indoor measurement points exceed the standard noise level threshold which is 55 dBA (+3 dB tolerance). However, from the questionnaire results most respondents just feel slightly disturbed by outdoor noise in the study area. The noise control that can be done such as cultivate number of natural vegetation such as heliconia sp, tea, acacia tree and pringgodani bamboo, also the installation of continuous wall from type of clear fiber that serves as building noise absorbers.


2015 ◽  
Vol 11 (3) ◽  
pp. 3218-3223
Author(s):  
Esi Oghenevovwero E ◽  
Edomi Ovie

The assessment of environmental traffic noise pollution in Uvwie local government area of Delta State, Nigeria was carried out using a well calibrated portable digital sound level meter (Model  CEL-231).  The sound level meter is an instrument used for measuring the exposure level of noise  in the field. The measurement was done three times/day (Morning session 9am – 10am, afternoon session 1pm – 2pm and Evening session 4pm – 5pm) and readings were taken. The mean results measured  from the studied area ranged from 74.61dB (A)  in the evening to 76.92dB (A)  in the afternoon with mean average of 76.66dB (A).The obtained mean values of traffic noise when compared with the permissible level for road traffic noise of 65 decibels dB (A) in commercial area during the Day time, it was observed that the  obtained mean level results exceeded the permissible standard  limit. These high values can be attributed to poor maintenance of the vehicles, indiscriminate usage of pressure horns and  present of heavy duty truck that load petroleum product and cargo containers from the Warri refinery and Warri port (Nigeria Port Authority) respectively. This study revealed that immediate health implication may not be observed at the present level, but long term health effects are probable in the nearest future.


Author(s):  
Petru A. Pop ◽  
Patricia A. Ungur ◽  
Liviu Lazar ◽  
Mircea Gordan ◽  
Florin M. Marcu

One wildly used method to reduce and control the noise pollution in green city’s buildings is using sonic-absorbent panels. Their applications can be multiple, such as the insulation of buildings, acoustic barriers and fences along the highway or in front of supermarkets, hospitals and other public buildings. This paper presents a method for testing the behavior of sonic-absorbent panels in open-air environment. The work represents a carrying on of previous research about absorbent materials from gypsum family, tested in lab conditions. The experiment setup used a dynamic installation and as a sample a stand formed by six sonic-absorbent panels from special modeling alpha-gypsum plaster. This installation has been composed of two loudspeakers for emitting the sound at a well-defined frequency by the first laptop, the microphone for detecting and transmitting the signal to the second laptop for analyzing and processing the data. All operations were performed using MATLAB Programs, while a Data Logger Sound Level Meter type CENTER 332 was put on near the microphone to compare both results. The first experiment of acoustic stand has been realized by setting up the installation at a frequency from 50 Hz to 1250 Hz and altering the distance between loudspeakers and stand at 0.5m to 1m and 1.5m, respectively. The second experiment kept the same test’s conditions, while two and three layers of sonic-absorbent panels formed the stand, respectively, but at same distance from source of 0.5 m. In both tests, the results underlined the good sonic-absorbent properties of these panels, especially at medium and high frequency, which can recommend using the panels for multiple outside applications.


2021 ◽  
Vol 6 (2) ◽  
pp. 68-76
Author(s):  
Aryo Sasmita ◽  
Muhammad Reza ◽  
Rodesia Mustika Rozi

Dalam kegiatan operasionalnya CV. X yang bergerak pada pengolahan kayu, berpotensi menimbulkan kebisingan yang berasal dari mesin-mesin yang digunakan dalam proses produksi pallet. Kebisingan di perusahaan ini dapat berpengaruh terhadap kesehatan dan kenyamanan pekerja. Penelitian ini bertujuan untuk mengetahui intensitas kebisingan yang dihasilkan oleh mesin produksi, lama waktu pemaparan, pemetaan kebisingan dan upaya pengendalian kebisingan. Metode pengukuran kebisingan mengacu pada metode noise mapping dan alat yang digunakan adalah Sound Level Meter. Data yang diperoleh kemudian diolah menjadi peta kontur dengan variasi warna biru, hijau, kuning, ungu dan merah. Hasil penelitian menunjukkan tingkat kebisingan tertinggi sebesar 99,4 dB dan tingkat kebisingan terendah sebesar 67,3 dB. Berdasarkan hasil perhitungan menggunakan persamaan NIOSH dari 128 titik pengukuran metode noise mapping terdapat 38 titik dengan tingkat kebisingan >85 dB yang menunjukkan waktu pemaparan di atas standar yang sudah direkomendasikan NIOSH. Tingkat kebisingan tertinggi sebesar 99,4 dB dengan lama pemaparan selama 0,3 jam dan tingkat kebisingan terendah sebesar 67,3 dB dengan lama pemaparan selama 475 jam. Upaya pengendalian yang dapat dilakukan untuk mengurangi kebisingan seperti pengendalian dari sumber, jalur transmisi, dan penerima.


Measurement ◽  
2021 ◽  
pp. 110409
Author(s):  
Marco Carratù ◽  
Consolatina Liguori ◽  
Vincenzo Paciello ◽  
Antonio Pietrosanto ◽  
Domenico Russo ◽  
...  

2019 ◽  
Vol 5 (2) ◽  
Author(s):  
Muh Azhari ◽  
Rudy Yoga Lesmana

Permasalahan lingkungan dari usaha kegiatan manusia untuk memenuhi kebutuhan hidup, seperti sandang, pangan, papan dan transportasi harus dilakukan penanganan dengan baik. Misalnya seperti pengaruh kegiatan transportasi udara terhadap kondisi kualitas lingkungan setempat  seperti kegiatan di Bandara Cilik Riwut Kelurahan Pahandut, Kecamatan Pahandut, Kota Palangka Raya Kalimantan Tengah. Metode penelitian yang digunakan merupakan metode kualitatif dengan analisis data instrumen seperti Sound Level Meter Instrument, Anemometer, GPS, Flight Radar, Google Maps Application & WECPNL Instrument (Weighted Equivalent Continuous Perceived Noise Level)  dan pengambilan data dilakukan selama tiga hari sesuai dengan kedatangan dan keberangkatan pesawat. Hasil penelitian dengan analisis WECPNL menunjukkan bahwa tingkat kebisingan di hari ke 2 lebih besar dibandingkan hari ke 3 dan hari ke 3 lebih besar dari hari ke 1 (87,2  > 82,2 > 75,9) dengan nilai rata-rata WECPNL sebesar 81,7. Kebisingan di bandara Cilik Riwut di Kota Palangka Raya Kalimantan Tengah termasuk kebisingan regional tingkat II dan III. Kegiatan yang dapat dilakukan untuk meminimalisir Risiko kebisingan tersebut yaitu dengan melakukan kegiatan rekayasa keteknikan dan menanam vegetasi yang berfungsi mengurangi kebisingan Kata kunci: Bandara, Kebisingan, Lingkungan. The environmental problems of the efforts of human activities to meet the needs of life, such as clothing, food, housing and transportation must be handled properly. For example, such as the influence of air transportation activities on local environmental quality conditions such as activities at Cilik Riwut Airport, Pahandut Village, Pahandut District, Palangka Raya City, Central of Kalimantan. The research method used is a qualitative method with data analysis instruments such as Sound Level Meter Instrument, Anemometer, GPS, Flight Radar, Google Maps Application and WECPNL Instrument (Weighted Equivalent Continuous Percepived Noise) and data collection is carried out for three days in accordance with the arrival and departure of the aircraft. Results of research with  WECPNL analysis show that the noise level on the second day is greater than the third day and the third day is greater than the first day (87,2  > 82,2 > 75,9) with  score average value is 81,7. Noise at Cilik Riwut airport in Palangka Raya City, Central Kalimantan including regional level II and III noise. activities that can be carried out are carrying out engineering activities and planting vegetation which have the function of reducing noise. Keyword: Airport, Environmental, Noice.


Sign in / Sign up

Export Citation Format

Share Document