scholarly journals Ménièreés syndrome and hearing changes

2019 ◽  
Author(s):  
vernon thornton

A simple test of hearing in the affected ear of a sufferer of Ménière's disease (me) has shown the following: a regular daily pattern of changes in hearing; the existence of three daily peaks of improvement in hearing; and that these peaks occurred about two hours after each of three daily meals. In one test, after skipping breakfast, the corresponding peak was absent. It is proposed that these changes in hearing were the result of raised blood insulin and sugar levels following a meal. This caused increased blood flow in the tiny blood vessels in the inner ear and improved the energy supply to vital ion-pumping epithelial cells.

2010 ◽  
Vol 108 (5) ◽  
pp. 1116-1126 ◽  
Author(s):  
A. R. Clark ◽  
K. S. Burrowes ◽  
M. H. Tawhai

This study presents a theoretical model of combined series and parallel perfusion in the human pulmonary acinus that maintains computational simplicity while capturing some important features of acinar structure. The model provides a transition between existing models of perfusion in the large pulmonary blood vessels and the pulmonary microcirculation. Arterioles and venules are represented as distinct elastic vessels that follow the branching structure of the acinar airways. These vessels are assumed to be joined at each generation by capillary sheets that cover the alveoli present at that generation, forming a “ladderlike” structure. Compared with a model structure in which capillary beds connect only the most distal blood vessels in the acinus, the model with combined serial and parallel perfusion provides greater capacity for increased blood flow in the lung via capillary recruitment when the blood pressure is elevated. Stratification of acinar perfusion emerges in the model, with red blood cell transit time significantly larger in the distal portion of the acinus compared with the proximal portion. This proximal-to-distal pattern of perfusion may act in concert with diffusional screening to optimize the potential for gas exchange.


Author(s):  
John L. Beggs ◽  
Peter C. Johnson ◽  
Astrid G. Olafsen ◽  
C. Jane Watkins

The blood supply (vasa nervorum) to peripheral nerves is composed of an interconnected dual circulation. The endoneurium of nerve fascicles is maintained by the intrinsic circulation which is composed of microvessels primarily of capillary caliber. Transperineurial arterioles link the intrinsic circulation with the extrinsic arterial supply located in the epineurium. Blood flow in the vasa nervorum is neurogenically influenced (1,2). Although a recent hypothesis proposes that endoneurial blood flow is controlled by the action of autonomic nerve fibers associated with epineurial arterioles (2), our recent studies (3) show that in addition to epineurial arterioles other segments of the vasa nervorum are also innervated. In this study, we examine blood vessels of the endoneurium for possible innervation.


2018 ◽  
Vol 6 (9) ◽  
Author(s):  
DR.MATHEW GEORGE ◽  
DR.LINCY JOSEPH ◽  
MRS.DEEPTHI MATHEW ◽  
ALISHA MARIA SHAJI ◽  
BIJI JOSEPH ◽  
...  

Blood pressure is the force of blood pushing against blood vessel walls as the heart pumps out blood, and high blood pressure, also called hypertension, is an increase in the amount of force that blood places on blood vessels as it moves through the body. Factors that can increase this force include higher blood volume due to extra fluid in the blood and blood vessels that are narrow, stiff, or clogged(1). High blood pressure can damage blood vessels in the kidneys, reducing their ability to work properly. When the force of blood flow is high, blood vessels stretch so blood flows more easily. Eventually, this stretching scars and weakens blood vessels throughout the body, including those in the kidneys.


2016 ◽  
Vol 11 (2) ◽  
pp. 210-217 ◽  
Author(s):  
A.T. Akhmetov ◽  
A.A. Valiev ◽  
A.A. Rakhimov ◽  
S.P. Sametov ◽  
R.R. Habibullina

It is mentioned in the paper that hydrodynamic conditions of a flow in blood vessels with the stenosis are abnormal in relation to the total hemodynamic conditions of blood flow in a vascular system of a human body. A microfluidic device developed with a stepped narrowing for studying of the blood flow at abnormal conditions allowed to reveal blood structure in microchannels simulating the stenosis. Microstructure change is observed during the flow of both native and diluted blood through the narrowing. The study of hemorheological properties allowed us to determine an increasing contribution of the hydraulic resistance of the healthy part of the vessel during the stenosis formation.


1963 ◽  
Vol 204 (1) ◽  
pp. 71-72 ◽  
Author(s):  
Edward D. Freis ◽  
Jay N. Cohn ◽  
Thomas E. Liptak ◽  
Aristide G. B. Kovach

The mechanism of the diastolic pressure elevation occurring during left stellate ganglion stimulation was investigated. The cardiac output rose considerably, the heart rate remained essentially unchanged, and the total peripheral resistance fell moderately. The diastolic rise appeared to be due to increased blood flow rather than to any active changes in resistance vessels.


Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 481
Author(s):  
Paulina Podkalicka ◽  
Olga Mucha ◽  
Katarzyna Kaziród ◽  
Iwona Bronisz-Budzyńska ◽  
Sophie Ostrowska-Paton ◽  
...  

Duchenne muscular dystrophy (DMD), caused by a lack of functional dystrophin, is characterized by progressive muscle degeneration. Interestingly, dystrophin is also expressed in endothelial cells (ECs), and insufficient angiogenesis has already been hypothesized to contribute to DMD pathology, however, its status in mdx mice, a model of DMD, is still not fully clear. Our study aimed to reveal angiogenesis-related alterations in skeletal muscles of mdx mice compared to wild-type (WT) counterparts. By investigating 6- and 12-week-old mice, we sought to verify if those changes are age-dependent. We utilized a broad spectrum of methods ranging from gene expression analysis, flow cytometry, and immunofluorescence imaging to determine the level of angiogenic markers and to assess muscle blood vessel abundance. Finally, we implemented the hindlimb ischemia (HLI) model, more biologically relevant in the context of functional studies evaluating angiogenesis/arteriogenesis processes. We demonstrated that both 6- and 12-week-old dystrophic mice exhibited dysregulation of several angiogenic factors, including decreased vascular endothelial growth factor A (VEGF) in different muscle types. Nonetheless, in younger, 6-week-old mdx animals, neither the abundance of CD31+α-SMA+ double-positive blood vessels nor basal blood flow and its restoration after HLI was affected. In 12-week-old mdx mice, although a higher number of CD31+α-SMA+ double-positive blood vessels and an increased percentage of skeletal muscle ECs were found, the abundance of pericytes was diminished, and blood flow was reduced. Moreover, impeded perfusion recovery after HLI associated with a blunted inflammatory and regenerative response was evident in 12-week-old dystrophic mice. Hence, our results reinforce the hypothesis of age-dependent angiogenic dysfunction in dystrophic mice. In conclusion, we suggest that older mdx mice constitute an appropriate model for preclinical studies evaluating the effectiveness of vascular-based therapies aimed at the restoration of functional angiogenesis to mitigate DMD severity.


1973 ◽  
Vol 82 (3) ◽  
pp. 359-369 ◽  
Author(s):  
John F. Schmedtje ◽  
Ann F. Batts

The localization of IgA, IgG, IgM, SP and the relationships of plasma cells and lymphocytes to blood vessels in the tonsillar crypt epithelium were investigated. Immunofluorescent techniques were used that included antisera specific for the two antigenic determinants of external secretory IgA, namely, 4s SP and 7s IgA, and also antisera specific for 7s IgG and 19s IgM. The secretory piece was absent in the crypt epithelium and in most of the crypt lumen. Aggregations of plasmacyte series cells, containing either IgG, IgA, or IgM were present in the crypt epithelium. Mature plasma cells of these aggregations abutted against the walls of blood sinusoids located in the epithelium, which suggested secretion into these sinusoids. All three immunoglobulins were also identified between epithelial cells and small lymphocytes. Postcapillary venules with emigrating small lymphocytes abounded in sub-epithelial sites, and were present at the lower border zone of the epithelium. Lymphocytes in shapes of diapedesis were observed in the endothelium of epithelial blood sinusoids. These observations are in accord with the hypothesis that a “circulation” of many lymphocytes occurs in the epithelium facilitating the activation of any one genetically committed lymphocyte.


1982 ◽  
Vol 41 (2-3) ◽  
pp. 421-425 ◽  
Author(s):  
A. Postiglione ◽  
P. Rubba ◽  
N. Scarpato ◽  
A. Iannuzzi ◽  
M. Mancini

Sign in / Sign up

Export Citation Format

Share Document