scholarly journals Effect of Botanical Pesticides on Soil Fertility of Coffee-Orchards

2009 ◽  
Vol 9 ◽  
pp. 16-22 ◽  
Author(s):  
Bhanu B. Panthi ◽  
Bhupendra Devkota ◽  
Jyoti U. Devkota

Coffee (Coffea arabica; Rubiaceae) is a potential and emerging commercial crop. Coffee is planted in the midhills of Nepal (800 to 1250 meter above mean sea level) in Gulmi and Lalitpur districts. To control the major insect pests of coffee plant, locally prepared ‘jaibik bishadi’ (botanical pesticides) are used as alternatives of the synthetic insecticides. This study was undertaken to see the contribution of ‘jaibik bishadi’ in the fertility of the coffee orchards soil, for which soil samples from botanicals used and not used coffee orchards were collected to see the level of soil characteristics and soil nutrients such as soil texture, organic matter, soil nutrients (phosphorous and potassium). There was some difference in the soil texture of topsoil, but no difference could be seen in sand, silt and clay content of the subsoils from botanical used and not used orchards. The pH was significantly different between botanical used and not used soils, but such difference could not be observed between the topsoil and subsoil from the same sites. Jaibik bishadi used to control the coffee pests significantly contributed in the soil fertility, which could be seen in high positive correlation (r=0.9886) between organic matter and nitrogen in the soil.Keywords: Coffee, jaibik bishadi, topsoil, subsoil, soil fertilityThe Journal of Agriculture and Environment Vol:9, Jun.2008 page: 16-22

2021 ◽  
Vol 13 (7) ◽  
pp. 3957
Author(s):  
Yingying Xing ◽  
Ning Wang ◽  
Xiaoli Niu ◽  
Wenting Jiang ◽  
Xiukang Wang

Soil nutrients are essential nutrients provided by soil for plant growth. Most researchers focus on the coupling effect of nutrients with potato yield and quality. There are few studies on the evaluation of soil nutrients in potato fields. The purpose of this study is to investigate the soil nutrients of potato farmland and the soil vertical nutrient distributions, and then to provide a theoretical and experimental basis for the fertilizer management practices for potatoes in Loess Plateau. Eight physical and chemical soil indexes were selected in the study area, and 810 farmland soil samples from the potato agriculture product areas were analyzed in Northern Shaanxi. The paper established the minimum data set (MDS) for the quality diagnosis of the cultivated layer for farmland by principal component analysis (PCA), respectively, and furthermore, analyzed the soil nutrient characteristics of the cultivated layer adopted soil quality index (SQI). The results showed that the MDS on soil quality diagnosis of the cultivated layer for farmland soil included such indicators as the soil organic matter content, soil available potassium content, and soil available phosphorus content. The comprehensive index value of the soil quality was between 0.064 and 0.302. The SPSS average clustering process used to classify SQI was divided into three grades: class I (36.2%) was defined as suitable soil fertility (SQI < 0.122), class II (55.6%) was defined as moderate soil fertility (0.122 < SQI < 0.18), and class III (8.2%) was defined as poor soil fertility (SQI > 0.186). The comprehensive quality of the potato farmland soils was generally low. The proportion of soil nutrients in the SQI composition ranged from large to small as the soil available potassium content = soil available phosphorus content > soil organic matter content, which became the limiting factor of the soil organic matter content in this area. This study revolves around the 0 to 60 cm soil layer; the soil fertility decreased gradually with the soil depth, and had significant differences between the respective soil layers. In order to improve the soil nutrient accumulation and potato yield in potato farmland in northern Shaanxi, it is suggested to increase the fertilization depth (20 to 40 cm) and further study the ratio of nitrogen, phosphorus, and potassium fertilizer.


2016 ◽  
Vol 41 (4) ◽  
pp. 735-757 ◽  
Author(s):  
NC Shil ◽  
MA Saleque ◽  
MR Islam ◽  
M Jahiruddin

Laboratory studies on soil fertility evaluation was carried out across major agroecological zones (AEZs) of Bangladesh to know the nutrient status of soils and to relate those with soil properties like pH, organic matter, CEC, and clay content. Thirty five composite soil samples were collected from intensive crop growing sites, which covered 17 AEZs of Bangladesh. After proper processing, the samples were analyzed for texture, pH, organic carbon, CEC, exchangeable cations (K, Ca, Mg and Na), total N, available P and S following standard methods. The textural class of the soils collected from AEZ 12 and 13 appeared to be mostly clay. Clay loam soil was found in AEZ 4, 8, 9, 11, 25 and 28. Loamy soil was seen in AEZ 1 while AEZ 22, 23 and 29 were mostly sandy textured. The results revealed that 65.7% of the tested soil was acidic while 25.7% was alkaline in nature. All the tested soils showed lower pHKCl compared to pHH2O thus possessed negative charge. About 68.6% of the collected soils contained low (1.10-1.70%) level of organic matter, 25.7% soils retained it at medium level (1.71-2.40) and 5.7% soils at very low level (<1.0%). All the tested soils appeared to be deficient (< 0.12%) in nitrogen content. 68.6% soil samples had the low level of available P while only 8.6% retained it an optimum amount. About 80% of the tested soils contained low level of available S (7.9- 14.7 mg kg -1) although coastal regions soils hold higher amount of available S. High CEC (20-38 cmol kg-1) was found in clay rich soils of AEZ 10, 11, 12, and 13. Study revealed that 40% of the collected soils were very low, 31.4% were low, 8.6% each of medium and optimum, and 11.4% contained high level of exchangeable K. The calcareous soils (AEZ 10, 11, 12 and 13) contained very high level of Ca. Non calcareous soils also showed fairly good level of Ca content except AEZ 1, 3, 23 and 29. Sandy textured soils of greater Dinajpur, Rangpur, Moulvibazar showed lower level of exchangeable Mg. About 86% of the tested soils had the lower (< 2%) potassium saturation percentage (KSP), which needs K application for sustainable crop production. Estimate showed that 44% variability for CEC may be attributed by clay content and the relationship was significant (p = 0.05). Again, 50.4 and 65.6% variability in exchangeable K and Mg, respectively may be governed by clay content of the soils, while such relationship for Ca was non-significant. CEC may contribute 62.2, 92.3 and 83.9% variability for exchangeable K, Ca and Mg content in soils, respectively. The fertility status of most of the studied soils (except AEZ 10, 12, 13 and to some extent 11) appeared to be low to very low, which demand judicious management in order to achieve food security and to conserve the soil fertility.Bangladesh J. Agril. Res. 41(4): 735-757, December 2016


Soil Research ◽  
2012 ◽  
Vol 50 (1) ◽  
pp. 7 ◽  
Author(s):  
Thomas Keller ◽  
Anthony R. Dexter

The plastic limits (lower plastic limit, PL; and liquid limit, LL) are important soil properties that can yield information on soil mechanical behaviour. The objective of this paper is to study the plastic limits of agricultural soils as functions of soil texture and organic matter (OM) content. The plastic limits were highly related to the clay content. The LL was more strongly correlated with clay than was PL, but the reasons are unclear. Interestingly, PL was virtually unaffected by clay content for soils with clay contents below ~35%. The OM had a strong effect on the plastic limits. This effect was clearly demonstrated when analysing soils of similar texture with a range of OM. We present equations (pedotransfer functions) for estimation of PL, LL, and plasticity index (PI) from soil texture and OM. Finally, we predict that the clay content must be ≥10% for soils without OM to be plastic; however, soils with <10% clay can be plastic if OM is present. More research is needed to investigate OM effects on soil consistency.


2021 ◽  
Vol 2 (4) ◽  
pp. 26-35
Author(s):  
Muhammad Ramzan ◽  

Basic soil composition, or more precisely, soil organic matter, soil clay mineralogy and soil texture have been in the core of most infrared spectroscopy research for soils. Of course, nutrient availability, soil structure, soil microbial activity and soil fertility have also been a major subject of interest over the past two decades. The determination of soil nutrients is now becoming a routine work at large scale to gain high yield. The large number of soil nutrients determining techniques are used. The current paper presented that among tested techniques, Near-infrared reflectance spectroscopy (NIRS) is a best technique which has been used widely with minimum time, low in cost, ecofriendly and rapid determination of chemical, physical properties and organic matter present in soil. Obviously, this useful technique can be used to estimate properties such as mineral composition, SOM, water, percentage of carbon, nitrogen and clay content. It could be used directly in soil mapping, for monitoring soil, for making inferences about its quality and function, and making geomorphological interpretations of its distribution. The development of most accurate and trustworthy NIRS approaches are required.


2020 ◽  
Vol 16 (2) ◽  
pp. 64
Author(s):  
DJAJADI DJAJADI ◽  
BAMBANG HELIYANTO ◽  
NURUL HIDAYAH

<p>ABSTRAK</p><p>Lahan pertanian yang didominasi oleh partikel pasir di daerah lahankering iklim kering mempunyai kapasitas yang rendah dalam menyimpanair dan unsur hara, serta rentan terhadap erosi. Penambahan tanah liat,zeolit, dan bahan organik diharapkan dapat meningkatkan kadar unsur haratanah, kadar air tanah, dan pertumbuhan tanaman. Penelitian yangdilakukan dari bulan Mei sampai Desember 2008 ini bertujuan untukmengetahui pengaruh penambahan tanah liat, zeolit dan interaksinyadengan bahan organik terhadap stabilitas makroagregat, kadar unsur haraC, N, P, dan K, daya pegang air tanah berpasir, populasi mikroorganismetanah serta pertumbuhan jarak pagar. Media tanam yang diuji sebanyak 5jenis, yaitu (1) 100% tanah pasir, (2) 95% tanah pasir + 5% tanah liat, (3)95% tanah pasir + 5% zeolit, (4) 94,2% tanah pasir + 5% tanah liat + 0,8%bahan organik, dan (5) 94,2% tanah pasir + 5% zeolit + 0,8% bahanorganik. Untuk mengetahui kemampuan daya pegang air tanah, makaperlakuan jenis media tersebut dikombinasikan dengan perlakuanfrekuensi pemberian air, yaitu dengan interval 7 dan 21 hari sekali.Perlakuan disusun dalam rancangan acak kelompok faktorial denganempat kali ulangan. Hasil penelitian menunjukkan bahwa penambahan 5%tanah liat + 0,8% bahan organik pada tanah berpasir dapat meningkatkanproporsi makroagregat, kadar unsur hara C, N, P, dan K, serta kapasitasdaya pegang air tanah. Penambahan sebanyak 5% zeolit pada tanah pasirmeningkatkan populasi bakteri. Peningkatan populasi jamur lebih dipacudengan frekuensi pemberian air 7 hari sekali. Pertumbuhan tinggi tanamanjarak pagar juga lebih dipercepat oleh pemberian air dengan frekuensi 7hari sekali.</p><p>Kata kunci: Jatropha curcas, pasir, liat, zeolit, bahan organik, kesuburantanah, pengairan</p><p>ABSTRACT</p><p>The role of clay, zeolit, and organic matter in increasingsoil fertility of sandy soil as growth media for Jatrophacurcas</p><p>Agricultural sandy soils have low capability to retain water andnutrients. Addition of clay, zeolit and organic matter to these soils wasexpected to increase macro-aggregate stability, soil nutrients and waterholding capacity. The research had been conducted from May up toDecember 2008 to find out the effect of addition of clay, zeolit, and theirinteractions with organic matter in increasing sandy soil fertility as growthmedia for Jatropha curcas. The study had an objective to quantify theeffect of plant media and frequency of watering on soil macro-aggregatestability, soil nutrients, water holding capacity, soil microorganismspopulation, and growth of J. curcas. Plant growth media tested in thisstudy consisted of 5 types, i.e. (1) 100% sand soil, (2) 95% sand soil + 5%clay soil, (3) 95% sand soil + 5% zeolit, (4) 94.2% sand soil + 5% clay +0.8% organic matter, and (5) 94.2% sand soil + 5% zeolit + 0.8% organicmatter. Watering of plant was divided into two time intervals, i.e. each of 7days and each of 21 days. Results showed that plant media which was amixture of 94.2% sand soil + 5% clay + 0.8% organic matter increasedproportion of maco-aggregate, plant nutrients (C, N, P, K) and soil waterholding capacity. Plant media consisted of mixture of 95% sand soil + 5%zeolit was suitable for development of bacteria population. Acceleratingof growth of J curcas was induced by watering with interval of 7 days.</p><p>Key words: Jatropha curcas, sand, clay, zeolit, organic matter, watering,soil fertility</p>


Author(s):  
Yocelyn B. Villa ◽  
Sat Darshan S. Khalsa ◽  
Rebecca Ryals ◽  
Roger A. Duncan ◽  
Patrick H. Brown ◽  
...  

AbstractThe effects of organic matter amendments (OMA) on soil fertility in permanent cropping systems like orchards is under-studied compared to annual cropping systems. We evaluated experimentally the impact of OMAs on soil fertility in almond (Prunus dulcis) orchards over a two-year period with annual applications. Two OMAs, derived from composted green waste (GWC) or composted manure wood chips (MWC), were applied as surface mulch and compared to a control at two sites with different soil textures (sandy loam and loamy sand). OMAs increased soil moisture content (0–0.1 m depth) at both sites by 27–37%. Both amendments increased soil inorganic N at the sandy loam (GWC: 194%; MWC: 114%) and loamy sand (GWC: 277%; MWC: 114%) sites the month following application, but soil inorganic N concentrations quickly decreased to values similar to those of control plots. After two-years, the GWC and the MWC amendments increased the soil cation exchange capacity (CEC) by 112% and 29%, respectively, in the sandy loam site, but no change was observed in the loamy sand site. The greatest increase in soil extractable K occurred in the GWC-amended plots at the sandy loam site even though the initial K concentration of MWC was higher. Both OMAs increased soil organic carbon (SOC) after two years, but the SOC increase in the GWC-amended plots was greater. Our results suggest that OMAs can significantly improve soil fertility after one or two annual applications, and that fertility gains appear to be dependent on soil texture than the nutrient concentrations of the OMA.


2014 ◽  
Vol 38 (2) ◽  
pp. 506-515 ◽  
Author(s):  
José Avelino Cardoso ◽  
Marilusa Pinto Coelho Lacerda ◽  
Thomaz Adolpho Rein ◽  
João de Deus Gomes dos Santos Junior ◽  
Cícero Célio de Figueiredo

Soil sampling should provide an accurate representation of a given area so that recommendations for amendments of soil acidity, fertilization and soil conservation may be drafted to increase yield and improve the use of inputs. The aim of this study was to evaluate the variability of soil fertility properties of Oxisols in areas planted to sugarcane in the State of Goias, Brazil. Two areas of approximately 8,100 m² each were selected, representing two fields of the Goiasa sugarcane mill in Goiatuba. The sugarcane crop had a row spacing of 1.5 m and subsamples were taken from 49 points in the row and 49 between the row with a Dutch auger at depths of 0.0-0.2 and 0.2-0.4 m, for a total of 196 subsamples for each area. The samples were individually subjected to chemical analyses of soil fertility (pH in CaCl2, potential acidity, organic matter, P, K, Ca and Mg) and particle size analysis. The number of subsamples required to compose a sample within the acceptable ranges of error of 5, 10, 20 and 40 % of each property were computed from the coefficients of variation and the Student t-value for 95 % confidence. The soil properties under analysis exhibited different variabilities: high (P and K), medium (potential acidity, Ca and Mg) and low (pH, organic matter and clay content). Most of the properties analyzed showed an error of less than 20 % for a group of 20 subsamples, except for P and K, which were capable of showing an error greater than 40 % around the mean. The extreme variability in phosphorus, particularly at the depth of 0.2-0.4 m, attributed to banded application of high rates of P fertilizers at planting, places limitations on assessment of its availability due to the high number of subsamples required for a composite sample.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 779
Author(s):  
Václav Voltr ◽  
Ladislav Menšík ◽  
Lukáš Hlisnikovský ◽  
Martin Hruška ◽  
Eduard Pokorný ◽  
...  

The content of organic matter in the soil, its labile (hot water extractable carbon–HWEC) and stable (soil organic carbon–SOC) form is a fundamental factor affecting soil productivity and health. The current research in soil organic matter (SOM) is focused on individual fragmented approaches and comprehensive evaluation of HWEC and SOC changes. The present state of the soil together with soil’s management practices are usually monitoring today but there has not been any common model for both that has been published. Our approach should help to assess the changes in HWEC and SOC content depending on the physico-chemical properties and soil´s management practices (e.g., digestate application, livestock and mineral fertilisers, post-harvest residues, etc.). The one- and multidimensional linear regressions were used. Data were obtained from the various soil´s climatic conditions (68 localities) of the Czech Republic. The Czech farms in operating conditions were observed during the period 2008–2018. The obtained results of ll monitored experimental sites showed increasing in the SOC content, while the HWEC content has decreased. Furthermore, a decline in pH and soil´s saturation was documented by regression modelling. Mainly digestate application was responsible for this negative consequence across all soils in studied climatic regions. The multivariate linear regression models (MLR) also showed that HWEC content is significantly affected by natural soil fertility (soil type), phosphorus content (−30%), digestate application (+29%), saturation of the soil sorption complex (SEBCT, 21%) and the dose of total nitrogen (N) applied into the soil (−20%). Here we report that the labile forms (HWEC) are affected by the application of digestate (15%), the soil saturation (37%), the application of mineral potassium (−7%), soil pH (−14%) and the overall condition of the soil (−27%). The stable components (SOM) are affected by the content of HWEC (17%), soil texture 0.01–0.001mm (10%), and input of organic matter and nutrients from animal production (10%). Results also showed that the mineral fertilization has a negative effect (−14%), together with the soil depth (−11%), and the soil texture 0.25–2 mm (−21%) on SOM. Using modern statistical procedures (MRLs) it was confirmed that SOM plays an important role in maintaining resp. improving soil physical, biochemical and biological properties, which is particularly important to ensure the productivity of agroecosystems (soil quality and health) and to future food security.


2021 ◽  
pp. 108302
Author(s):  
Gerrit Angst ◽  
Jan Pokorný ◽  
Carsten W. Mueller ◽  
Isabel Prater ◽  
Sebastian Preusser ◽  
...  

2021 ◽  
Author(s):  
Mathias Mayer ◽  
Boris Rewald ◽  
Bradley Matthews ◽  
Hans Sandén ◽  
Christoph Rosinger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document