scholarly journals Assessment of surface water quality in relation to water quality index of tropical lentic environment, Central Gujarat, India

2014 ◽  
Vol 3 (1) ◽  
pp. 168-176 ◽  
Author(s):  
Hiren B Soni ◽  
Sheju Thomas

The present study involved the determination of surface water quality index of tropical sacred wetland viz. Dakor Pilgrimage Wetland (DPW), Central Gujarat, India. The main aim of the study was to evaluate various water quality parameters to draw-out the water quality index for an assessment of a tropical aquatic body. The monthly values of pH, Dissolved Oxygen (DO), Total Suspended Solids (TSS), Total Dissolved Solids (TDS), Total alkalinity (TA), Total Hardness (TH), Calcium Hardness (Ca), Magnesium Hardness (Mg), Chloride, Sulphate, Phosphate, Sodium, and Potassium, were analyzed to compute water quality index (WQI). The results manifest that WQI at site 1 (D1) was maximum (161.74), followed by D2 (159.96), and minimum at site 3 (D3) (157.19). The values clearly depicts that quality of water is completely unfit for human consumption unless and until strict and mandatory steps are taken to rejuvenate it. The suggestive measures to improve the overall health of an aquatic body is also discussed herewith alongwith conservation measures and management strategies. DOI: http://dx.doi.org/10.3126/ije.v3i1.9952 International Journal of Environment Vol.3(1) 2014: 168-176

2020 ◽  
Vol 15 (4) ◽  
pp. 960-972
Author(s):  
M. F. Serder ◽  
M. S. Islam ◽  
M. R. Hasan ◽  
M. S. Yeasmin ◽  
M. G. Mostafa

Abstract The study aimed to assess the coastal surface water quality for irrigation purposes through the analysis of the water samples of some selected estuaries, rivers, and ponds. The analysis results showed that the mean value of typical water quality parameters like electrical conductivity (EC), total dissolved solids (TDS), sodium (Na+), and chloride (Cl−) ions exceeded the permissible limit of the Department of Environment (DoE), Bangladesh 2010, and FAO, 1985 for the pre- and post-monsoon seasons. The Piper diagram indicated a Na-Cl water type, especially during the pre- and post-monsoon seasons. The water quality parameters in the areas showed a higher amount than the standard permissible limits, indicating that the quality is deteriorating. The water quality index values for domestic uses showed very poorly to unsuitable in most of the surface waters except pond water, especially during the pre- and post-monsoon periods. The surface water quality index for irrigation purpose usages was found to be high and/ or severely restricted (score: 0–55) during the pre- and post-monsoon seasons. The study observed that due to saline water intrusion, the water quality deterioration started from post-monsoon and reached its highest level during the pre-monsoon season, which gradually depreciates the water quality in coastal watersheds of Bangladesh.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 336
Author(s):  
Nguyen Thanh Giao ◽  
Phan Kim Anh ◽  
Huynh Thi Hong Nhien

The study was conducted to spatiotemporally analyze the quality, location and critical water variables influencing water quality using water monitoring data from the Department of Environment and Natural Resources, Dong Thap province in 2019. The water quality parameters including turbidity, pH, temperature, dissolved oxygen (DO), total suspended solids (TSS), biological oxygen demand (BOD), chemical oxygen demand (COD), nitrite (N-NO2−), nitrate (N-NO3−), ammonium (N-NH4+), total nitrogen (TN), orthophosphate (P-PO43−), chloride (Cl−), oil and grease, sulfate (SO42−), coliforms, and Escherichia coli (E. coli) were collected at 58 locations with the frequency of four times per year (February, May, August, and November). These parameters were compared with national technical regulation on surface water quality—QCVN 08-MT: 2015/BTNMT. Water quality index (WQI) was calculated and spatially presented by geographical information system (GIS) tool. Pearson correlation analysis, cluster analysis (CA), and principal component analysis (PCA) were used to evaluate the correlation among water quality parameters, group and reduce the sampling sites, and identify key parameters and potential water pollution sources. The results showed that TSS, BOD, COD, N-NH4+, P-PO43−, coliforms, and E. coli were the significant concerns impairing the water quality. Water quality was assessed from poor to medium levels by WQI analysis. CA suggested that the current monitoring locations could be reduced from 58 sites to 43 sites which can be saved the total monitoring budget up to 25.85%. PCA showed that temperature, pH, TSS, DO, BOD, COD, N-NH4+, N-NO2−, TN, P-PO43−, coliforms, and E. coli were the key water parameters influencing water quality in Dong Thap province’s canals and rivers; thus, these parameters should be monitored annually. The water pollution sources were possibly hydrological conditions, water runoff, riverbank erosion, domestic and urban activities, and industrial and agricultural discharges. Significantly, the municipal and agricultural wastes could be decisive factors to the change of surface water quality in the study area. Further studies need to focus on identifying sources of water pollution for implementing appropriate water management strategies.


Author(s):  
Nguyen Ngan Ha ◽  
Tran Thi Thu Huong ◽  
Pham The Vinh ◽  
Tran Thi Van

This paper presents the study of integrating the remote sensing technology with in-situ ground observation for assessing the status of water quality in Ca Mau city through the Vietnam Water Quality Index (VN-WQI). The Sentinel-2 image and in-situ surface water samples were collected on 20 February 2020 for this study. The sample results were then specified by samples’ coordination. Besides, Sentinel-2 imaging was processed by radiometric and atmospheric correction, geometric registration, and extracted pixel spectral values from the sample locations. The multiple linear regressions of seven water quality parameters including BOD5, COD, NH4, PO4, TSS, pH, Coliform with surface water’s pixel spectral values from the satellite images were calculated and used to simulate water quality parameters on the satellite image. They were integrated into the VN-WQI to estimate, classify, and evaluate the general surface water quality of the Ca Mau city. The results show that there is a regressive correlation between measured data and image spectral values, and the simulation also well fits with the data with an acceptable error. The surface water quality of Ca Mau city is heavily polluted with almost all water quality parameters recognized at B1 to above B2 level according to the QCVN08-MT:2015/BTNMT. In terms of VN-WQI, the results also illustrate the low quality of surface water and heavy pollution only used for water transportation, not for domestic use. This approach can be a powerful method in spatially monitoring water quality and supporting environment management.


Author(s):  
Runit Isaac ◽  
Shaziya Siddiqui

Abstract In this research, Water Quality Index and Multivariate Statistics Techniques was carried out on fourteen water quality parameters collected quarterly (four times/year) from nine water sources in Agra, Uttar Pradesh, India for one year (May 2019- April 2020). The Water Quality Parameters (WQP) included are the concentration of hydrogen ion (pH), Electrical conductivity, Turbidity, Total dissolved solids (TDS), Total Hardness, Total Alkalinity, Calcium, Sulphate, Chloride, Magnesium, Iron, COD, DO, and BOD. The Water sample collected shows that the mean values of physicochemical parameters are in the range of WHO and BIS except for Hardness in summer (1,680 mg/L); monsoon (832.22 mg/L); winter (1,876.66 mg/L); spring (1,535.55 mg/L), TDS in summer (1,000.33 mg/L); monsoon (683.44 mg/L); winter (1,087.66 mg/L); spring (776.66 mg/L) and sulphate (927.22 mg/L); monsoon (446.77 mg/L); winter (925.77 mg/L); spring (944.88 mg/L) which indicate the bad quality of water. The WQI values were calculated for three locations at different weather conditions. WQI values in summer, winter and spring are 630.90, 279.61, 279.91 shows that river water is not suitable for drinking purpose whereas the WQI value in monsoon is 75.89 shows that water is fit for drinking purposes due to the dilution of river water. A moderate positive correlation was observed for turbidity with total hardness, iron, total alkalinity, and sulphate. Negative Correlation was observed with pH. Moderate Correlation was seen with TDS-EC (0.608), TDS-Alkalinity (0.7794), EC-Ca (0.723) and strong was observed for BOD-DO (0.941) and Ca-Mg (0.999). Principal Component Analysis revealed that five factors were significant (eigen value > 0.5) with total variance of 39.43%–85.19% respectively. The ICP-MS study of water sample from point source indicate the presence of Ni2+, Cr6+, Co2+, Mn2+, Cu2+, Zn2+ ions at higher concentrations.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Santhosh Kumar Nadikatla ◽  
Venkata SubbaRao Mushini ◽  
Phani Surya Murali Krishna Mudumba

AbstractClean, safe and acceptable fresh water is fundamental to the existence of life. There is still a serious problem with adequate availability of fresh and quality of water for human consumption. This study, therefore, assesses the relevance of groundwater in the selected sites of villages of Palakonda mandal in the Srikakulam district of Andhra Pradesh, India, for consumption, based on different indices of water quality. Groundwater is the principal source for domestic and irrigation purposes in this region. In order to assess the quality of groundwater, 39 groundwater samples were collected during pre- and post-monsoon season from 2013 to 2016. The concentrations of physicochemical parameters such as pH, electrical conductivity, total dissolved solids, total hardness (TH), Ca(II), Mg(II), fluoride (F−), chloride (Cl−), dissolved oxygen, total alkalinity and nitrite (NO2−) were analyzed to compute Water Quality Index (WQI). The results of the concentrations were interpreted and compared with WHO (2012) and BIS (2012) standards. Correlation between various parameters was also computed, and the results were presented. The results of WQI computation infer that the groundwater of the selected sites in Palakonda mandal is rated as ‘good’ for human consumption.


Author(s):  
Jyotsana Pandit ◽  
S. K. Bhardwaj

The studies of surface water quality of urban areas has become a major environmental challenge. In effect these aquatic ecosystems are increasingly under strong anthropogenic pressure. This fact causes the deteriorations of their quality and biodiversity. That seems the cases of the surface water of Solan District. Known the importance of these ecosystems in socio-economic activities of this district, it is important to lead studies for water qualities assessment. So, the surface water quality of urban areas of Solan District was assessed using the water quality index (WQI).To realize this objective, water samples were collected from five urban areas (Arki, Baddi, Nalagarh, Parwanoo, Solan) during the summer and winter seasons and were analyzed for major physicochemical parameters, viz. pH, EC, turbidity, TDS, BOD, COD, DO,As, Cr, Zn, Pb, Cd, to determine its suitability for drinking and domestic purposes. In surface water pH, EC, turbidity, TDS, BOD, COD, DO were found in the range of 6.74-7.55, 0.294-0.506 dS m-1,3.71-7.79 NTU, 105.51-253.26 mg l-1, 1.51-3.14 mg l-1,101.79-166.88 mg l-1, 4.16-6.58 mg l-1 consequently. Trace elements Pb, Cr, Zn, As, Cd, were found in the range of 0.04-0.28 mg l-1, 0.034-0.063 mg l-1, 0.22-0.46 mg l-1, 0.004-0.020 mg l-1 and 0.002-0.008 mg l-1 respectively. All water quality parameters except Pb, Cr, Cd were within the permissible limits. Out of all urban areas WQI of Arki (33) and Solan (46) was categorized as good. Whereas WQI of Parwanoo, Baddi and Nalagarh was 69, 62, 57 respectively and was categorized as poor, indicating negative impacts o urbanization and industrialization. The study indicated that urbanization in the district has started impacting surface water sources, therefore bregular quality monitoring is required and for sustainable urbanization the implementation of stringent rules and guidelines are needed to enhance health and preserve them for future generations.


2020 ◽  
Vol 14 (2) ◽  
pp. 131-137
Author(s):  
Hemant Pathak

The present work is aimed at assessing the water quality index (WQI) for the Rajghat reservoir water on Bewas River life line of Sagar city. This has been determined by collecting water samples from selected 5 locations covered entire reservoir, and subjecting the samples to a most important physico-chemical analysis. 14 parameters have been considered: DO, water temperature, Conductivity, TDS, TSS, pH, Total hardness, calcium content, magnesium content, Total alkalinity, chloride, nitrate, o-Phosphate, and iron present in water samples. The results obtained reveal that the water quality of the area needs some degree of treatment before consumption. It therefore becomes imperative to regularly monitoring the quality of water to protect it. The objective of the present work is to compute water quality index values to assess the suitability of water for human consumption. Water level has a net positive effect on water quality in water body through dilution of environmental parameters. Consequently, local management agencies should pay more attention to nutrient concentrations during the monitoring schedule, as well as during the low-water periods which manifest a relatively bad water quality state.


2013 ◽  
Vol 2 (1) ◽  
pp. 202-223 ◽  
Author(s):  
Hiren B Soni ◽  
Sheju Thomas

The present paper highlights the preliminary investigation of physico-chemical characteristics of tropical pilgrimage wetland viz. Dakor Sacred Wetland (DSW), Anand District, Central Gujarat, India. As the existing water body is contaminated with domestic sewage influenced by anthropogenic interventions, an urgent need was felt to evaluate physico-chemical parameters such as Temperature, pH, Dissolved Oxygen (DO), Total Solids (TS), Total Suspended Solids (TSS), Total Dissolved Solids (TDS), Free CO2, Phenolphthalein Alkalinity (PA), Total Alkalinity (TA), Carbonates, Bicarbonates, Total Hardness, Calcium Hardness, Magnesium Hardness, Chloride, Salinity, Sulphate, Phosphate, Nitrate, Sodium, and Potassium. The obtained data were correlated statistically to draw a conclusion about the surface water quality of tropical pilgrimage wetland. Moreover, the results manifested the need and prime necessity to restore the physical, chemical and biological integrity with viable and rigorous restoration and management strategies in order to maintain, preserve, conserve and to avert the ecological imbalance and disturbance in hydro-geo-chemical and hydro-biological cycles, which adversely affect the food chain and food web of the significant pond ecosystem. International Journal of Environment, Volume-2, Issue-1, Sep-Nov 2013, Pages 202-223 DOI: http://dx.doi.org/10.3126/ije.v2i1.9222


2020 ◽  
Author(s):  
Mariana Marselina ◽  
Arwin Sabar ◽  
Nurul Fahimah

Abstract In recent years, developments in agriculture, industry, and urban activities, especially around rivers and reservoirs have caused significant changes to the quality and quantity of water resources. This includes the Saguling Reservoir, which is located in Citarum basin, Indonesia. A review of previous studies reveals that Water Quality Index (WQI) is efficient for the identification of pollution sources as well as for the understanding of temporal and spatial variations in reservoir water quality. The National Sanitation Foundation – Water Quality Index (NSFWQI), which is a commonly used indicator of surface water quality, is based on turbidity, temperature, phosphate, nitrate, fecal coliform, pH, DO, TS, and BOD parameters. Using the results from the correlation matrix, we show that the two water quality parameters that influence the NSFWQI value the most are turbidity and fecal coliform. The average index of NSFWQI was determined to be 48.42 during the dry season, 43.97 during the normal season, and 45.82 during the wet season. A calculation of the WQI classified the water quality in the Saguling Reservoir as “bad” in condition. This study reveals that the strongest and most significant correlation between the concentration parameters and the WQI score is the turbidity concentration fecal coli, which is usable to determine the required parameters for the calculation of WQI with reduced parameters, if needed. This research also conducted nitrate concentration distribution analysis around Saguling Reservoir using the Inverse Distance Weighted method.


Sign in / Sign up

Export Citation Format

Share Document