scholarly journals Plant diversity and carbon stock in sacred groves of semi-arid areas of Cameroon: case study of Mandara Mountains

2015 ◽  
Vol 4 (2) ◽  
pp. 308-318 ◽  
Author(s):  
VA Kemeuze ◽  
PM Mapongmetsem ◽  
DJ Sonwa ◽  
E Fongnzossie ◽  
BA Nkongmeneck

The Mandara Mountain eco-region is one of the most important mountain areas of Cameroon. It is often considered as a refuge for several plant and wildlife species. This area is fragile and vulnerable, and faces severe threats from land use change, unsustainable exploitation of natural resources, desertification and climate change. Recent studies in sacred groves portrayed these land use types as indigenous strategies which can help to address these environmental problems. Understanding the plant diversity and carbon storage of these land use types in Mandara Mountain can be a good step towards their sustainable management for the delivery of diverse ecosystem services. In this perspective, we established a total of 10 nested circular plots of 1257 m2 each, in the sacred grove of the Mouhour village in Mandara Mountain, and all trees and shrubs with average diameter at breast height (dbh) ≥ 2.5 cm were counted. Tree biomass was estimated on the basis of DBH and understory biomass using destructive method. A total of 182 woody plants were measured, belonging to 21 species, 18 genera and 12 families. The richest family is Combretaceae with 5 species, followed by Caesalpiniaceae and Mimosaceae (3 species each). The analysis of species diversity indexes shows a relative important biodiversity and the vegetation structure showed a high occurrence of small-diameter of plant species. Mean aboveground carbon stock of 31.13 ± 10.8 tC/ha was obtained in the study area. Isoberlinia doka showed the greatest carbon stock (5.7 tC/ha) followed by Boswellia dalzielii (3.9 tC/ha), Acacia senegal (3.5 tC/ha), Anogeissus leiocarpus (3.3 tC/ha) and Terminalia laxiflora (3.1 tC/ha). These results suggest that the sacred groves of Cameroon dry lands need to be taken into account in national environment protection policies as an alternative to respond to international agreements related to biodiversity conservation, combatting desertification and climate change. DOI: http://dx.doi.org/10.3126/ije.v4i2.12659 International Journal of Environment Vol.4(2) 2015: 308-318

2021 ◽  
Author(s):  
Aiuob moradi ◽  
Nagi Shabanian

Abstract Background Rising atmospheric carbon dioxide has led to the global consequences of climate change. Biological carbon sequestration through vegetation and soils is one of the cost-effective ways to reduce this gas. Forests ecosystems are the most important carbon pools among terrestrial ecosystems and play a sustainable and long-term role in reducing climate change. Among forest ecosystems, sacred groves are less-disturbed and they can be a pattern of successful forest management for carbon sequestration and climate change reduction. In the present study, for the first time, the amount of carbon content in sacred grove and silvopastoral lands were investigated to determine the capacity of Zagros oak forests in carbon sequestration and climate change reduction. The aim of this study was to estimate the amount of carbon reserves in mentioned land-uses in order to obtain a systematic attitude towards management of these different land-use types and attain a suitable solution to counter the climate change crisis and ultimately sustainable environmental development. Results The results showed that each of the studied variables in the two studied land use is significantly different from each other. The mean of each of these biomass or carbon pools in silvopastoral is significantly lower than sacred groves. The results indicate that the common utilizations in the forests of the study area cause a significant reduction (P ≤ 0.01) in the forest biomass value and respective carbon content. Sacred grove currently absorbs 826.96 tons of carbon dioxide per hectare more than silvopastoral lands and this is a sign of high degradation in the forests of the study area. Conclusions According to the results obtained in this study, forest ecosystems that are protected against human intervention play a significant role in long-term carbon storage. Any interference with the natural conditions of the ecosystem has a significant negative impact on carbon reserves. Therefore, by selecting appropriate measures, local communities should be empowered to reduce their dependence on low incomes obtained from deforestation and conversion.


2021 ◽  
Author(s):  
Aioub Moradi ◽  
Naghi Shabanian

Abstract Background Rising atmospheric carbon dioxide has led to the global consequences of climate change. Biological carbon sequestration through vegetation and soils is one of the cost-effective ways to reduce this gas. Forest's ecosystems are the most important carbon pools among terrestrial ecosystems and play a sustainable and long-term role in reducing climate change. Among forest ecosystems, sacred groves are less-disturbed and they can be a pattern of successful forest management for carbon sequestration and climate change reduction. In the present study, for the first time, the amount of carbon content in sacred grove and silvopastoral lands were investigated to determine the capacity of Zagros oak forests in carbon sequestration and climate change reduction. The aim of this study was to estimate the amount of carbon reserves in mentioned land-uses in order to obtain a systematic attitude towards management of these different land-use types and attain a suitable solution to counter the climate change crisis and ultimately sustainable environmental development. Results The results showed that each of the studied variables in the two studied land use is significantly different from each other. The mean of each of these biomass or carbon pools in silvopastoral is significantly lower than sacred groves. The results indicate that the common utilizations in the forests of the study area cause a significant reduction (P ≤ 0.01) in the forest biomass value and respective carbon content. Sacred grove currently absorbs 826.96 tons of carbon dioxide per hectare more than silvopastoral lands and this is a sign of high degradation in the forests of the study area. Conclusions According to the results obtained in this study, forest ecosystems that are protected against human intervention play a significant role in long-term carbon storage. Any interference with the natural conditions of the ecosystem has a significant negative impact on carbon reserves. Therefore, by selecting appropriate measures, local communities should be empowered to reduce their dependence on low incomes obtained from deforestation and conversion.


Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1240
Author(s):  
Ming-Yun Chu ◽  
Wan-Yu Liu

As compared with conventional approaches for reducing carbon emissions, the strategies of reducing emissions from deforestations and forest degradation (REDD) can greatly reduce costs. Hence, the United Nations Framework Convention on Climate Change regards the REDD strategies as a crucial approach to mitigate climate change. To respond to climate change, Taiwan passed the Greenhouse Gas Reduction and Management Act to control the emissions of greenhouse gases. In 2021, the Taiwan government has announced that it will achieve the carbon neutrality target by 2050. Accordingly, starting with focusing on the carbon sink, the REDD strategies have been considered a recognized and feasible strategy in Taiwan. This study analyzed the net present value and carbon storage for various land-use types to estimate the carbon stock and opportunity cost of land-use changes. When the change of agricultural land to artificial forests generated carbon stock, the opportunity cost of carbon stock was negative. Contrarily, restoring artificial forests (which refer to a kind of forest that is formed through artificial planting, cultivation, and conservation) to agricultural land would generate carbon emissions, but create additional income. Since the opportunity cost of carbon storage needs to be lower than the carbon market price so that landlords have incentives to conduct REDD+, the outcomes of this study can provide a reference for the government to set an appropriate subsidy or price for carbon sinks. It is suggested that the government should offer sufficient incentives to reforest collapsed land, and implement interventions, promote carbon trading policies, or regulate the development of agricultural land so as to maintain artificial broadleaf forests for increased carbon storage.


Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 602
Author(s):  
Ina Aneva ◽  
Petar Zhelev ◽  
Simeon Lukanov ◽  
Mariya Peneva ◽  
Kiril Vassilev ◽  
...  

Studies on the impact of agricultural practices on plant diversity provide important information for policy makers and the conservation of the environment. The aim of the present work was to evaluate wild plant diversity across the agroecosystems in two contrasting regions of Bulgaria; Pazardzhik-Plovdiv (representing agroecosystems in the lowlands) and Western Stara Planina (the Balkan Mountains, representing agroecosystems in the foothills of the mountains). This study conducted a two-year assessment of plant diversity in different types of agricultural and forest ecosystems, representing more than 30 land use types. Plant diversity, measured by species number, was affected by the land use type only in Pazardzhik-Plovdiv region. More pronounced was the effect of the groups of land use types on the diversity, measured by the mean species number per scoring plot. Climatic conditions, measured by 19 bioclimatic variables, were the most important factor affecting plant species diversity. Six bioclimatic variables had a significant effect on the plant diversity, and the effect was more pronounced when the analysis considered pooled data of the two regions. The highest plant diversity was found on grazing land with sparse tree cover, while the lowest one was in the land use types representing annual crops or fallow. The study also established a database on weed species, relevant to agriculture. A number of common weeds were found in the Pazardzhik-Plovdiv region, while the most frequent species in the Western Stara Planina region were indigenous ones. Overall, the natural flora of Western Stara Planina was more conserved; eleven orchid species with conservation significance were found in the pastures and meadows in that region. The present study is the first attempt in Bulgaria to characterize the plant diversity across diverse agroecosystems representing many different land use types and environmental conditions. The results can contribute to nature conservation, biodiversity, and the sustainable use of plant resources.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261842
Author(s):  
Jianyong Xiao ◽  
Binggeng Xie ◽  
Kaichun Zhou ◽  
Shana Shi ◽  
Junhan Li ◽  
...  

Soil loss caused by erosion is a global problem. Therefore, the assessment of soil erosion and the its driving mechanism are of great significance to soil conservation. However, soil erosion is affected by both climate change and human activities, which have not been quantified, and few researchers studied the differences in the driving mechanisms of soil erosion depending on the land use type. Therefore, the spatiotemporal characteristics and changing trends of soil erosion in the Dongting Lake Basin were analyzed in this study. Geographic detectors were used to identify the dominant factors affecting soil erosion in different land use types. In this study, a sensitivity experiment was conducted to clarify the relative contributions of climate change and human activities to soil erosion changes. In addition, we studied the effects of different land use types and vegetation cover restoration on soil erosion. The results show that soil erosion in the Dongting Lake Basin decreased from 2000 to 2018. Human activities represented by land use types and vegetation coverage significantly contributed to the alleviation of soil erosion in the Dongting Lake Basin, whereas climate change represented by rainfall slightly aggravated soil erosion in the study area. The restoration of grassland vegetation and transfer of cultivated land to woodlands in the study area improved the soil erosion. The slope steepness is the key factor affecting the intensity of soil erosion in dry land, paddy fields, and unused land, whereas the vegetation coverage is the key factor affecting the intensity of soil erosion in woodland, garden land, and grassland. Detailed spatiotemporally mapping of soil erosion was used to determine the connections between soil erosion and potential drivers, which have important implications for vegetation restoration and the optimization of land use planning.


2022 ◽  
Vol 9 (2) ◽  
pp. 3387-3396
Author(s):  
Diriba Megersa Soboka ◽  
Fantaw Yimer

This study was conducted to estimate carbon stock enhancement and climate change mitigation potential of restoration effort in Rebu Watershed, Woliso Woreda, Ethiopia. Two restored lands of thirteen years old were randomly selected from two kebeles. Biomass and soil data were collected systematically from nested plots. Mensuration of woody species, soil, and grass/litter samples was collected from the subplots of the nested plots. A total of 72 composite soil samples were collected. The results showed the positive impact of restoration activity on enhancing biomass and soil organic carbon stocks. The restored land ecosystem had shown higher carbon stock of (138.51 ± 27.34 t/ha) than the adjacent unrestored land ecosystem (101.43 ± 21.25 t/ha), which confirmed the potential of restoration in enhancing the carbon stock and mitigating climate change. Hence, the restored land use type has been stored about 8.37 t/ha of carbon dioxide equivalent (CO2e) in biomasses. The restored land use type has mitigated climate change (absorb CO2) by 7.7 times than the adjacent unrestored land use type in this study. The significant values in restored land use types were due to the enhanced vegetation and land cover, which contributed to the biomass and soil organic carbon accumulation. Moreover, the lower values in unrestored land use type were due to the continuous degradation and disturbance from livestock and human beings. Therefore, the result of this study showed that protecting the degraded lands from any disturbance could enhance the carbon stocks of the ecosystem and mitigate the carbon emission rate.


2016 ◽  
Vol 13 (5) ◽  
pp. 1519-1536 ◽  
Author(s):  
Maria Stergiadi ◽  
Marcel van der Perk ◽  
Ton C. M. de Nijs ◽  
Marc F. P. Bierkens

Abstract. Climate change and land management practices are projected to significantly affect soil organic carbon (SOC) dynamics and dissolved organic carbon (DOC) leaching from soils. In this modelling study, we adopted the Century model to simulate past (1906–2012), present, and future (2013–2100) SOC and DOC levels for sandy and loamy soils typical of northwestern European conditions under three land use types (forest, grassland, and arable land) and several future scenarios addressing climate change and land management change. To our knowledge, this is the first time that the Century model has been applied to assess the effects of climate change and land management on DOC concentrations and leaching rates, which, in combination with SOC, play a major role in metal transport through soil. The simulated current SOC levels were generally in line with the observed values for the different kinds of soil and land use types. The climate change scenarios result in a decrease in both SOC and DOC for the agricultural systems, whereas for the forest systems, SOC is projected to slightly increase and DOC to decrease. An analysis of the sole effects of changes in temperature and changes in precipitation showed that, for SOC, the temperature effect predominates over the precipitation effect, whereas for DOC the precipitation effect is more prominent. A reduction in the application rates of fertilisers under the land management scenario leads to a decrease in the SOC stocks and the DOC leaching rates for the arable land systems, but it has a negligible effect on SOC and DOC levels for the grassland systems. Our study demonstrated the ability of the Century model to simulate climate change and agricultural management effects on SOC dynamics and DOC leaching, providing a robust tool for the assessment of carbon sequestration and the implications for contaminant transport in soils.


2020 ◽  
Author(s):  
Maurine Antoine ◽  

<p>The impacts of climate change on natural systems and biodiversity are known and already visible in some regions. With regard to agronomic systems, the effects of climate change have also been widely studied. However, some processes are still poorly understood, such as the links between pollinators and climate change or land use change. The feedbacks between different systems under climate change and land use change are still very little explored and require a multidisciplinary approach. It is within this framework that the MAPPY project fits.</p><p>The overall objective of the MAPPY project, funded by the AXIS program of JPI-Climate, is to study quantitatively feedback processes linking pollinators, plant diversity and crop yields in the context of climate and land use changes. A set of complementary models will be assembled, iteratively, to capture the dynamics of this complex system at regional level. Dynamic vegetation models and species distribution models will be used to assess the impacts of future climate change. Then, an agent-based model will be used to derive detailed land use and land cover change scenarios for the future at the scale of studied regions. The results of this combination of models will make it possible to assess the potential impacts on pollinator communities, which will make it possible to refine crop models. Finally, the socio-economic impacts of these forecasts will be assessed.</p><p>Several case study regions are defined in Europe. The entire study will be undertaken with local stakeholders who will identify the most relevant topics to be addressed. Indeed, stakeholders are asking more and more questions about climate change impact on crop yields, fruit crop damage, pollinator decline. Therefore, they will help us select the results that will be useful to them. Finally, a web platform will be developed with online tools allowing exploration of project results. The platform will be designed by involving stakeholders from the start of the project.</p>


Sign in / Sign up

Export Citation Format

Share Document