scholarly journals Plant Parasitic Nematodes and their management in crop production: a review

2021 ◽  
Vol 4 (2) ◽  
pp. 327-338
Author(s):  
Honey Raj Mandal ◽  
Shambhu Katel ◽  
Sudeep Subedi ◽  
Jiban Shrestha

Plant Parasitic Nematodes are small worm like transparent, bilateral symmetry, pseudocoelomate, multicellular, free living or parasitic microorganism which are predatory, aquatic, terrestrial, entopathogenic, ectoparasite, endoparasite, semi-endoparasite or sedentary. They cause substantial problems to major crops throughout the world, including vegetables, fruits, and grain crops. The root knot and cyst nematodes are economically important pests in numerous crops. Crop damage from nematodes is not readily apparent in most cases, and it often remains hidden by the many other factors limiting plant growth. In the past, the control of the nematodes has been based on the synthetic nematicides, the number of which has been drastically restricted in the EU because of their environmental side effects and subsequent restriction in European Union (EU) rules and regulations. Many other methods like cultural control, biological control, use of biotechnological tools and methods, use of resistant cultivars are tested and proven successful in controlling different species of nematodes all over the world. Alternatively, combinations of the different methods are proven to be highly effective both economically and environmentally.

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 369
Author(s):  
Pasqua Veronico ◽  
Maria Teresa Melillo

Plant parasitic nematodes are annually responsible for the loss of 10%–25% of worldwide crop production, most of which is attributable to root-knot nematodes (RKNs) that infest a wide range of agricultural crops throughout the world. Current nematode control tools are not enough to ensure the effective management of these parasites, mainly due to the severe restrictions imposed on the use of chemical pesticides. Therefore, it is important to discover new potential nematicidal sources that are suitable for the development of additional safe and effective control strategies. In the last few decades, there has been an explosion of information about the use of seaweeds as plant growth stimulants and potential nematicides. Novel bioactive compounds have been isolated from marine cyanobacteria and sponges in an effort to find their application outside marine ecosystems and in the discovery of new drugs. Their potential as antihelmintics could also be exploited to find applicability against plant parasitic nematodes. The present review focuses on the activity of marine organisms on RKNs and their potential application as safe nematicidal agents.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Olaf Kranse ◽  
Helen Beasley ◽  
Sally Adams ◽  
Andre Pires-daSilva ◽  
Christopher Bell ◽  
...  

Abstract Plant-parasitic nematodes are a continuing threat to food security, causing an estimated 100 billion USD in crop losses each year. The most problematic are the obligate sedentary endoparasites (primarily root knot nematodes and cyst nematodes). Progress in understanding their biology is held back by a lack of tools for functional genetics: forward genetics is largely restricted to studies of natural variation in populations and reverse genetics is entirely reliant on RNA interference. There is an expectation that the development of functional genetic tools would accelerate the progress of research on plant-parasitic nematodes, and hence the development of novel control solutions. Here, we develop some of the foundational biology required to deliver a functional genetic tool kit in plant-parasitic nematodes. We characterize the gonads of male Heterodera schachtii and Meloidogyne hapla in the context of spermatogenesis. We test and optimize various methods for the delivery, expression, and/or detection of exogenous nucleic acids in plant-parasitic nematodes. We demonstrate that delivery of macromolecules to cyst and root knot nematode male germlines is difficult, but possible. Similarly, we demonstrate the delivery of oligonucleotides to root knot nematode gametes. Finally, we develop a transient expression system in plant-parasitic nematodes by demonstrating the delivery and expression of exogenous mRNA encoding various reporter genes throughout the body of H. schachtii juveniles using lipofectamine-based transfection. We anticipate these developments to be independently useful, will expedite the development of genetic modification tools for plant-parasitic nematodes, and ultimately catalyze research on a group of nematodes that threaten global food security.


2021 ◽  
Author(s):  
Shahid Siddique ◽  
Zoran S. Radakovic ◽  
Clarissa Hiltl ◽  
Clement Pellegrin ◽  
Thomas J. Baum ◽  
...  

AbstractPlant-parasitic nematodes are a major, and in some cases a dominant, threat to crop production in all agricultural systems. The relative scarcity of classical resistance genes highlights a pressing need to identify new ways to develop nematode-resistant germplasm. Here, we sequence and assemble a high-quality genome of the model cyst nematode Heterodera schachtii to provide a platform for the first system-wide dual analysis of host and parasite gene expression over time, covering all major stages of the interaction. This novel approach enabled the analysis of the hologenome of the infection site, to identify metabolic pathways that were incomplete in the parasite but complemented by the host. Using a combination of bioinformatic, genetic, and biochemical approaches, we show that the highly atypical completion of vitamin B5 biosynthesis by the parasitic animal, putatively enabled by a horizontal gene transfer from a bacterium, is critically important for parasitism. Knockout of either the plant-encoded or the now nematode-encoded steps in the pathway blocks parasitism. Our experiments establish a reference for cyst nematodes, use this platform to further our fundamental understanding of the evolution of plant-parasitism by nematodes, and show that understanding congruent differential expression of metabolic pathways represents a new way to find nematode susceptibility genes, and thereby, targets for future genome editing-mediated generation of nematode-resistant crops.


2002 ◽  
Vol 55 ◽  
pp. 287-290
Author(s):  
N.L. Bell

A computerbased key for identifying plant parasitic nematodes of temperate agriculture in New Zealand and around the world is described It uses the Lucid software developed at the University of Queensland and includes images of major diagnostic features The key is multiaccess rather than dichotomous so may be entered at any point allowing for the most obvious characters of a specimen to be scored first and thereby immediately reduce the number of likely taxa Both qualitative and quantitative characters are used The key requires that the specimen can be viewed microscopically but examples of most morphological terms are illustrated so the nonspecialist should be able to make use of the key


Plant Disease ◽  
2021 ◽  
Author(s):  
İmren Mustafa ◽  
Göksel Özer ◽  
Timothy Paulitz ◽  
Alexei Morgounov ◽  
Abdelfattah A. Dababat

Kazakhstan is one of the biggest wheat producers, however, its wheat production is far below the average international wheat production standard due to biotic and abiotic stressors. Plant-parasitic nematodes are devastating for cereal production systems worldwide. A comprehensive survey was conducted in 2019 to identify plant-parasitic nematodes associated with wheat in different locations of central, eastern, and south-eastern Kazakhstan. The results revealed 33 root-lesion and 27 cyst nematode populations from the 77 localities sampled. These two genera occurred in separate or in mixed populations. The root-lesion populations were identified as Pratylenchus neglectus and P. thornei while all cyst nematodes were identified as Heterodera filipjevi. The identification of nematodes was firstly performed based on morphological and morphometric features and confirmed by BLAST and phylogenetic analyses based on the internal transcribed spacer and the D2-D3 expansion located in the 28S gene of ribosomal DNA for CCN and RLN populations, respectively. Pratylenchus neglectus and P. thornei populations from Kazakhstan showed a high similarity with the American, European, and Asian populations. Heterodera filipjevi populations formed a well-supported cluster with the corresponding populations from different countries and showed a slightly intraspecific polymorphism. Kazakhstan populations of H. filipjevi may have multiple introductions in Kazakhstan due to the divergence among them. The results of this study are of great importance for breeding programs and will enable awareness to extension advisors to develop measures to control these nematodes in cereal cropping areas in Kazakhstan.


Nematology ◽  
2021 ◽  
pp. 1-10
Author(s):  
Seenivasan Nagachandrabose ◽  
Richard Baidoo

Summary There is a growing interest in the use of natural products for crop production and protection. Humic acid is a well-known bioresource that intensifies soil functions and improves crop productivity. This review article provides a synopsis of the humic acid-plant-nematode association and the prospects for using humic acid as an alternative to chemical control of nematodes. Humic acid is known to have toxic and antagonistic effects against many plant-parasitic nematodes, including Meloidogyne spp., Rotylenchulus reniformis, Radopholus similis and Helicotylenchus multicinctus. The required dose for getting significant nematode control ranges from 0.04 to 2.0% concentration. Delivery methods like soil application or drenching, seedling root dip treatment and foliar spray on leaves are effective for nematode control. Humic acid controls plant-parasitic nematodes through various mechanisms including killing juveniles, inhibiting hatching, reducing nematode infectivity and reproduction, and inducing systemic resistance. Humic acid is compatible with bio-inoculants such as Azospirillum spp., phosphobacterium, Bacillus megaterium, Pseudomonas fluorescens, Trichoderma viride, Glomus spp., Pochonia chlamydosporia, Purpureocillium lilacinum and T. asperellum. These attributes of humic acid show a promising potential for use in nematode control. However, further work on bio-efficacy against a broad spectrum of plant-parasitic nematodes is needed.


2010 ◽  
Vol 40 (No. 1) ◽  
pp. 21-25 ◽  
Author(s):  
N. Agbenin O

An increasing number of researchers worldwide are showing interest in organic amendment of soil as means of nematode control. Numerous plant species with nematicidal compounds have been identified. Neem (<I>Azadirachta indica) </I>is considered the best-known example of plants with nematicidal properties and is available commercially in some parts of the world. Its efficiency has been proven locally, with the seed powder giving good control in both field and screenhouse. Several materials are in use as organic amendment. However, the choice of materials for amendment will determine its efficiency in control. The use of organic amendments that are disease-free and with a narrow C:N ratio will improve soil fertility while more efficiently reducing the level of nematodes and minimising the risk of increasing the level of another soil borne pathogens and pest


1999 ◽  
Vol 73 (1) ◽  
pp. 67-71 ◽  
Author(s):  
P. Mendoza de Gives ◽  
K.G. Davies ◽  
M. Morgan ◽  
J.M. Behnke

Populations of Pasteuria penetrans isolated from root-knot nematodes (Meloidogyne spp.) and cyst nematodes (Heterodera spp.) were tested for their ability to adhere to a limited selection of sheathed and exsheathed animal parasitic nematodes, free living nematodes, including Caenorhabditis elegans wild type and several srf mutants, and plant parasitic nematodes. The attachment of spores of Pasteuria was restricted and no spores were observed adhering to any of the animal parasitic nematodes either with or without their sheath or to any of the free living nematodes including C. elegans and the srf mutants. All spore attachment was restricted to plant parasitic nematodes; however, spores isolated from cyst nematodes showed the ability to adhere to other genera of plant parasitic nematodes which was not the case with spores isolated from root-knot nematodes. The results are discussed in relationship to cuticular heterogeneity.


2021 ◽  
Vol 37 (5) ◽  
pp. 446-454 ◽  
Author(s):  
Abraham Okki Mwamula ◽  
Dong Woon Lee

Plant-parasitic nematodes are not only an important constraint on agricultural crop production, but also cause both direct and indirect damage to turfgrass, which is a ground cover plant. However, studies on plant-parasitic nematodes of turfgrass in Korea are scarce. A survey for plant-parasitic nematodes was carried out on 13 golf courses in Korea. The results yielded 28 species/taxa belonging to 16 genera and 12 families of plant-parasitic nematodes. Among the isolated species, <i>Helicotylenchus microlobus</i>, <i>Mesocriconema</i> <i>nebraskense</i>, <i>Tylenchorhynchus claytoni</i>, <i>Mesocriconema</i> sp., and <i>Meloidogyne graminicola</i> were the most prevalent species in all management zones. Twelve species were new records of plant-parasitic nematodes in Korea. Highest maximum densities were showed by <i>T. claytoni</i>, <i>Paratylenchus nanus</i>, <i>M. nebraskense</i>, <i>M. graminicola</i>, and <i>H. microlobus</i>. Diversity (<i>H’</i>), was significantly higher in fairways compared to tees and greens, though species evenness (<i>J’</i>) and dominance (<i>D</i>) showed no statistically significant differences. This information is crucial in nematode problem diagnosis, and the subsequent formulation of management strategies.


2019 ◽  
Vol 41 (3) ◽  
Author(s):  
Nguyen Huu Tien ◽  
Nguyen Thi Duyen ◽  
Le Duc Huy ◽  
Nobleza Neriza ◽  
Trinh Quang Phap

Plant-parasitic nematodes are known as one of the most important pests attacking various plants in the world, and investigating the nematode component is very essential for management of this pest and prevent damage to plants in general. Our survey of plant-parasitic nematodes on medicinal plants in Melinh Station for Biodiversity, a place for conservation of precious plants and animals in Vietnam, identified ten species that belong to nine genera, five families, and two orders of plant-parasitic nematodes parasitizing six medicinal plants. Excoecaria cochinchinensis was parasitized by the highest number of nematode genera (5 genera, including Xiphinema, Discocriconemella, Meloidogyne, Helicotylenchus, and Hemicriconemoides), while Hymenocallis littoralis was associated with the highest number of plant-parasitic nematodes (2060 nematodes/250g soil). The results also showed that Discocriconemella limitanea was found to be a dominant species with the highest number of individuals on 6 medicinal plants, and the genus Helicotylenchus had the highest frequency of appearance (5/6 plants or 83.3%). These nematodes caused symptoms such as yellowing leaves, root galls, and root lesions, which directly affect the quality and yield of medicinal plants. Based on the results, this study showed that plant-parasitic nematodes are a potential threat to the cultivation of medicinal plants in Melinh Station for Biodiversity, and thus, control measures should be applied to ensure sustainable cultivation of medicinal plants in this place.


Sign in / Sign up

Export Citation Format

Share Document