scholarly journals Investigation on Wintry Thermal Comfort in Traditional Houses of Nepalese Three Climatic Regions

2020 ◽  
Vol 15 (3) ◽  
pp. 133-140
Author(s):  
Basudev Gautam ◽  
Hom Bahadur Rijal ◽  
Masanori Shukuya

The traditional houses are well adapted to the climate and socio-culture using local building materials and techniques. However, traditional practices are being replaced by the artificial materials, modern design and new technology. It requires strong policies to sustain the traditional architecture. The objectives of this study are to evaluate the thermal condition of traditional houses and to estimate the comfort temperature of residents. The thermal comfort survey was conducted during winter in the traditional houses. The thermal sensation votes were collected from 275 people in cold, temperate and sub-tropical climatic regions. This study was revealed that the mean indoor air temperature in cold climatic region is 12.3°C, which was 9.5K and 4.4K lower than sub-tropical and temperate climates. The comfort temperature of the residents in the cold climate was 13.9°C, which was 8.8K and 3.8K lower than sub-tropical and temperate climates. The mean clothing insulation in cold climate was 1.63 clo which was 0.48 clo and 0.31 clo higher than sub-tropical and temperate climates. It concludes that the people were well adapted to each climate with clothing adjustments and made themselves satisfied with the thermal condition of their houses.

2021 ◽  
Vol 896 (1) ◽  
pp. 012074
Author(s):  
W Budiawan ◽  
K Tsuzuki ◽  
H Sakakibara

Abstract The comfort temperature and sleep quality of Indonesian residing in Japan during summer might be different from Japanese. As an extended previous research, this study aimed to compare the thermal comfort and sleep quality between Japanese and Indonesian students. Male Indonesian and Japanese students aged 20-35 years participated in this study. The participants completed a survey regarding thermal sensation before sleep. During sleep, actigraphy was used to monitor sleep. Additionally, the temperature and relative humidity of the participants’ bedrooms were recorded. The findings of this study indicated that Indonesian students’ bedroom temperature and relative humidity were not significantly different from those of Japanese students during the summer. Most of Indonesian students preferred neutral, like the Japanese students. According to a thermal comfort survey, Indonesians had the same sensation as Japanese (slightly comfortable). However, the Griffiths method revealed that the mean comfort temperature of Indonesian was higher than those of Japanese students. We also discovered that Indonesian students had shorter duration on bed and sleep minute than Japanese students. Furthermore, the sleep rate of Indonesian students was comparable to that of Japanese students. In conclusion, Indonesian students as tropical native became capable of adjusting to the hot and humid conditions in temperate climate, Japan.


2020 ◽  
Vol 12 (21) ◽  
pp. 9284
Author(s):  
Jiao Xue ◽  
Xiao Hu ◽  
Shu Nuke Sani ◽  
Yuanyuan Wu ◽  
Xinyu Li ◽  
...  

Thermally comfortable outdoor spaces have contributed to high-quality urban living. In order to provide a further understanding of the influences of gender and long-term thermal history on outdoor thermal comfort, this study conducted field surveys at a university campus in Shanghai, China by carrying out microclimatic monitoring and subjective questionnaires from May to October, 2019. The analysis of collected data found that, during our survey, 57% of the occupants felt comfortable overall and 40–60% of them perceived the microclimate variables (air temperature, humidity, solar radiation, and wind speed) as “neutral”. The universal thermal climate index (UTCI) provided a better correlation with occupant thermal sensation than the physiologically equivalent temperature (PET). Females were more sensitive to the outdoor thermal environment than males. Older age led to lower thermal sensation, but the thermal sensitivities for age groups of <20, 20–50, and >50 were similar. Occupants who had resided in Shanghai for a longer period showed higher overall comfort rating and lower thermal sensation. Interviewees who came from hot summer and cold winter climate regions were less effected by the change of UTCI than those from severe cold or cold climate regions.


2019 ◽  
Vol 29 (1) ◽  
pp. 84-100 ◽  
Author(s):  
Samar Thapa

The study of thermal comfort in buildings is required to maintain a stable and comfortable condition of the indoor environment. The climate chamber study used to determine thermal comfort is mathematically reproducible and robust, but exaggerative and hence is energy inefficient, whereas the adaptive model-based field survey method is exhaustive and bioclimatic specific. Although, several field survey-based thermal comfort studies have been reported from India, these studies were conducted mostly either in hot and humid or composite climatic condition, and very few research has been reported from cold climatic region, which lies mostly along the high altitudinal Himalayan region. In this paper, the results of field survey-based thermal comfort studies in residential houses of highly altitudinal Darjeeling Himalayan region in eastern India are presented. The study found that female subjects showed a lesser clothing cover but portrayed a higher discomfort with lower thermal sensation and higher comfort temperature. The comfort temperature as determined in this study did not comply with the ASHRAE standard 55 graphical method, and hence new comfort zone for regions with similar cold climate is proposed.


Author(s):  
Nurshahrily Idura Ramli ◽  
Mohd Izani Mohamed Rawi ◽  
Ahmad Zahid Hijazi ◽  
Abdullah Hayyan Kunji Mohammed

<p>In this modern century where fine comfort is a necessity especially in buildings and occupied space, the study to satisfy one aspect of human comfort is a must. This study encompasses of exploring the physiological and environmental factors in achieving thermal comfort which specifically considering the clothing insulation and metabolic rate of students as well as the deployment of dry-bulb temperature, mean radiant temperature, humidity, and air movement in order to obtain the level of comfort students are experiencing in class. The level of comfort are detected by using ASHRAE 55 to determine the average thermal sensation response through the Predicted Mean Vote (PMV) value. An android application were developed to read input of recognizing clothing level (thickness of clothing) and capturing metabolic rate to cater the inputs for physiological factors, while radiant temperature, humidity and air movement are captured through static sensors set up in the classroom space. This paper analyses both the physiological and environmental factors in affecting students in class and further determine their comfort levels that is a major influencing factor of focus in learning. Through cross referencing collected data from IoT enabled nodes, it is found that both physiological and environmental factors, and the combination of them greatly influence in getting the most comfortable state with PMV value of 0.</p>


2017 ◽  
Vol 1 (T4) ◽  
pp. 232-240
Author(s):  
Nam Thi Que Nguyen ◽  
Nam Thi Que Nguyen ◽  
Thanh Cong Tran

Thermal comfort is a parameter to assess environmental indoor quality which affects especially performance of students. A cross-sectional study was conducted in classrooms at a university campus in Ho Chi Minh City to assess the thermal condition during the class time. Microclimate parameters were measured at the same time when students answered the survey on their thermal sensation and acceptability of the indoor climate. Objective data analysis from adaptive PMV model for non-air-conditioned buildings revealed that none of classes had the thermal condition were in the comfort zone of TCVN 7438:2004, coinciding with the subjective result from the surveys. The research showed that 72 percent of the 472 students did not accept the thermal environment and 91.3 percent of students preferred cooler. The suggested neutral temperature was 29.4 oC, the derived from the linear regression between adaptive Predicted Mean Vote (aPMV) and operative temperature (To).


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Feiran Xue ◽  
Jingyuan Zhao

Under the trend of building green and comfortable development, effective control of building energy consumption has become one of the problems that countries are actively facing to solve. People’s demand for residential buildings has changed from the past survival type to a comfortable and livable type. The high level of heating energy consumption is worthy of in-depth study. In order to reduce energy consumption, realize the mapping of energy-saving concepts in buildings, and understand the energy consumption of different building materials and the influence of external factors on human thermal comfort, this book has conducted research on building thermal comfort based on energy-saving concepts. First of all, this article introduces the concept and application mode of energy-saving concepts in buildings and the concept of thermal comfort and the SET index of standard effective temperature, including the two-node model and the algorithm involved in the Fanger heat balance equation. In the experimental part, a model based on the concept of energy saving was designed to predict and analyze the energy consumption and thermal comfort effects of the building. In the analysis part, a comprehensive analysis of the effects of temperature, humidity, wind speed, and gender on thermal comfort, methods to improve thermal comfort, cumulative load changes with the heat transfer coefficient of windows, and the effects of windows of different materials on energy consumption was performed. At the same temperature, the wind speed is different, and the degree of heat sensation is also different. When the wind speed is 0.18 m/s and the temperature is 28°C, the thermal sensation is 0.32, and the human sensation is close to neutral. When the wind speed increases to 0.72 m/s, the heat sensation drops to −0.45, and the human body feels neutral and cool. It can be seen that the increase in wind speed has a certain compensation effect on the thermal sensation of the human body. When the wind speed does not change, increase the air temperature. For example, when the wind speed is 0.72 m/s, the temperature is 28°C, and the thermal sensation is −0.45, and when the temperature is increased to 29°C, the thermal sensation is 0.08, which shows that the temperature is improving the thermal sensation of the human body which has a certain offsetting effect. By studying the thermal comfort of buildings based on energy-saving concepts, it is possible to obtain the effect of external factors on thermal comfort, thereby optimizing building materials and using building materials with lower heat transfer coefficients to reduce heating energy consumption.


2019 ◽  
Vol 111 ◽  
pp. 02004 ◽  
Author(s):  
Xiaojie Zhou ◽  
Sumei Liu ◽  
Xuan Liu ◽  
Xiaorui Lin ◽  
Ke Qing ◽  
...  

Thermal environment in residential kitchen in China is transient and non-uniform and with strong radiation asymmetry from gas stove. Due to the complexity of kitchen thermal environment, it is not sure if previous thermal comfort models can accurately predict the thermal comfort in residential kitchens. In order to evaluate if existing thermal comfort models can be applied for Chinese kitchens, this investigation conducted human subject tests for 20 cooks when preparing dishes in a kitchen. The study measured skin temperatures of the cooks and environmental parameters and used questionnaires to obtain their thermal sensation votes at the same time. The actual thermal sensation votes were compared with the predicted ones by four thermal comfort models: predicted mean vote (PMV) model, dynamic thermal sensation (DTS) model, the University of California at Berkeley (UCB) model, and the transient outdoor thermal comfort model from Lai et al. The results showed that all the models could predict the trend of the thermal sensations but with errors. The PMV model overpredicted the thermal sensations. The UCB and Lai’s models showed a slower change in thermal sensation votes (TSV) after turning on the stove. The DTS model was more accurate than the others in predicting the mean thermal sensation, but with a large variation in predicting individual thermal sensation votes. A better thermal comfort model should be developed for Chinese residential kitchens.


2021 ◽  
Vol 13 (2) ◽  
pp. 678
Author(s):  
Mehdi Makvandi ◽  
Xilin Zhou ◽  
Chuancheng Li ◽  
Qinli Deng

To date, studies of outdoor thermal comfort (OTC) have focused primarily on physical factors, tending to overlook the relevance of individual adaptation to microclimate parameters through psychological and physiological behaviors. These adaptations can significantly affect the use of urban and outdoor spaces. The study presented here investigated these issues, with a view to aiding sustainable urban development. Measurements of OTC were taken at a university campus and in urban spaces. Simultaneously, a large-scale survey of thermal adaptability was conducted. Two groups were selected for investigation in a cold-winter-and-hot-summer (CWHS) region; respondents came from humid subtropical (Cfa) and hot desert (BWh) climates, according to the Köppen Climate Classification (KCC). Results showed that: (1) neutral physiological equivalent temperature (NPET) and preferred PET for people from the Cfa (PCfa) and BWh (PBWh) groups could be obtained with KCC; (2) PCfa adaptability behaviors were, subjectively, more adjustable than PBWh; (3) Clothing affected neutral temperature (NT), where NT reduced by approximately 0.5 °C when clothing insulation rose 0.1 Clo; and (4) Gender barely affected thermal acceptance vote (TAV) or thermal comfort vote (TCV) and there was a substantial relationship between thermal sensation, NT, and PET. These findings suggest ‘feels like’ temperature and comfort may be adjusted via relationships between microclimate parameters.


2021 ◽  
Vol 53 (6) ◽  
pp. 210606
Author(s):  
Cornelia Hildegardis ◽  
Anak Agung Ayu Oka Saraswati ◽  
I Dewa Gede Agung Diasana Putra ◽  
Ni Ketut Agusinta Dewi

This research examined thermal comfort in  church buildings in Indonesia by making a comparison between three different Indonesian climatic regions using three different research models. A static model, an adaptation study model and a CFD simulation were used to find the similarities and differences between the results generated from determining thermal comfort in church buildings in the three regions. The comparison revealed that church buildings had different PMV scores at each measuring point that were inversely proportional to the subjects’ response on thermal comfort inside the buildings, i.e. points adjoining with openings affect a low PMV score and a high perceived thermal sensation, and vice versa. The CFD simulation showed that changing the conditions of the openings affects air velocity and flow into the building, which influences the subjects’ thermal comfort response inside the churches.


2019 ◽  
Vol 15 (7) ◽  
pp. 155014771986550 ◽  
Author(s):  
Miao Zang ◽  
Zhiqiang Xing ◽  
Yingqi Tan

Thermal comfort control for indoor environment has become an important issue in smart cities since it is beneficial for people’s health and helps to maximize their working productivity and to provide a livable environment. In this article, we present an Internet of things–based personal thermal comfort model with automatic regulation. This model employs some environment sensors such as temperature sensor and humidity sensor to continuously obtain the general environmental measurements. Specially, video cameras are also integrated into the Internet of things network of sensors to capture the individual’s activity and clothing condition, which are important factors affecting one’s thermal sensation. The individual’s condition image can be mapped into different metabolic rates and different clothing insulations by machine learning classification algorithm. Then, all the captured or converted data are fed into a predicted mean vote model to learn the individual’s thermal comfort level. In the prediction stage, we introduce the cuckoo search algorithm, which converges rapidly, to solve the air temperature and air velocity with the learnt thermal comfort level. Our experiments demonstrate that the metabolic rates and clothing insulation have great effect on personal thermal comfort, and our model with video capture helps to obtain the variant values regularly, thus maintains the individual’s thermal comfort balance in spite of the variations in individual’s activity or clothing.


Sign in / Sign up

Export Citation Format

Share Document